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A B S T R A C T   

This paper describes simulations of drifting snow in the atmospheric surface layer. We develop a Lagrangian 
particle dispersion model coupled with a large-eddy simulation code based on the central-moment lattice 
Boltzmann method. The model reproduces typical features of drifting snow observed in the field, such as the 
dependency of the mass transport rate on the flow velocity, the kink in the vertical mass flux profile near the 
saltation layer height, and the variations in particle size distribution with the flow velocity and height. The 
saltation layer height determined directly from the net forces acting on the airborne particles is found to increase 
monotonically with increasing flow velocity, unlike conventional estimates, which tend to saturate as the flow 
velocity increases. Using the vertical transition probabilities of individual particles, the transition from saltation 
to suspension is confirmed to occur near the estimated saltation layer height. A composite analysis shows that 
snow streamers (dense particle clouds elongated in the streamwise direction and meandering laterally in the 
saltation layers) are closely associated with small-scale low-speed streaks in the near-surface flows. Particularly 
dense snow streamers are more likely to occur around streaks modulated by high-speed coherent flows of much 
larger spatial scales.   

1. Introduction 

Drifting snow is a significant factor in hazard control because it re-
duces visibility, creates obstructions through snowdrifts, and produces 
snow cornices that may trigger avalanches. The large-scale redistribu-
tion of snow is known to affect the surface water balance in polar regions 
and hilly terrain. Terrestrial ecosystems and underground frozen soil in 
high-latitude and/or high-altitude areas, which are highly sensitive to 
the spatial distribution of vegetation and micro-topography, can also be 
profoundly affected by the micro-scale environments produced by het-
erogeneous depositions of snow (see Mott et al., 2018 for a compre-
hensive review of wind-driven snow cover dynamics). 

Drifting snow is essentially a non-stationary two-phase flow, in 
which airborne particles and turbulence strongly interact. Further 
complexity is added by the spatio-temporal intermittencies induced by 

coherent turbulent motion onto the near-surface flow velocities and the 
surface processes that feed particles into the flow (Doorschot et al., 
2004; Aksamit and Pomeroy, 2018a, 2018b). Therefore, besides the 
pivotal role of observational and experimental studies, the need for 
numerical modelling cannot be overemphasized as a means of compre-
hending the nature of drifting snow phenomena that occur in the at-
mospheric surface layers. 

The first attempt at three-dimensional numerical modelling was 
made by Uematsu et al. (1991). They modelled drifting snow using an 
Eulerian advection–diffusion equation for the bulk density of drifting 
snow particles, which were driven by an airflow simulated by the 
Reynolds-averaged Navier–Stokes (RANS) equations. Their model was 
applied to the simulation of snowdrifts around obstacles (Sato et al., 
1993). Since then, Tominaga and Mochida (1999), Beyers et al. (2004), 
and many subsequent studies have refined this type of model and 
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developed improved versions (see Tominaga, 2018; Zhou and Zhang, 
2023 for comprehensive reviews of numerical studies on snowdrifts 
around obstacles). Owing to their computational efficiency, Eulerian 
models are highly suitable for regional-scale studies (Liston and Sturm, 
1998; Gauer, 2001; Liston et al., 2007; Tominaga et al., 2011) and for 
operational purposes (Pomeroy et al., 1993). 

A Lagrangian approach, in which the trajectories of individual par-
ticles are traced by integrating the equation of motion, provides a more 
explicit representation of the particles’ behaviour in the flow. The study 
of Shao and Li (1999) was probably the first to use a Lagrangian particle 
model coupled with a RANS airflow model for simulating drifting snow. 
Nemoto and Nishimura (2004) took a similar approach in their simu-
lations of two-dimensional snow-particle trajectories in a coupled 
one-dimensional flow, and this model was later used by Niiya and 
Nishimura (2017, 2022). Recently, this type of model has been applied 
to three-dimensional simulations of drifting snow over roofs (Chen et al., 
2021; Liu et al., 2022; Zhou et al., 2023). A remarkable feature of the 
Lagrangian approach is its ability to realistically reproduce the parti-
cle–surface interactions. This is because the key surface processes of the 
aerodynamic entrainment of particles, the rebound of impacting parti-
cles, and the splash entrainment of the snow-bed particles can be 
directly incorporated into the tracing of individual trajectories. 

The intermittency induced by turbulent coherent motion, which 
RANS models are unable to represent, has motivated the development of 
next-generation models, namely Lagrangian particle models coupled 
with large-eddy simulation (LES) models of atmospheric surface-layer 
flow. Pioneering studies were conducted by Dupont et al. (2013) for 
drifting soil particles and by Groot Zwaaftink et al. (2014) for drifting 
snow. Recent studies have used LES-coupled Lagrangian snow-particle 
models to investigate the horizontal structure of drifting snow (Huang 
and Wang, 2016), the intermittent nature of drifting snow (Okaze et al., 
2018), large-scale drifting snowstorms in the atmospheric boundary 
layer (Wang and Jia, 2018), sublimation of saltating snow particles 
(Sharma et al., 2018; Wang et al., 2019), heat and water-vapour transfer 
during drifting snow events (Sigmund et al., 2022), and the dependency 
of drifting snow on the snow properties (Melo et al., 2022). 

Besides solving the Navier–Stokes equations directly, the lattice 
Boltzmann method (or algorithm) offers another approach to flow 
simulation (Chen and Doolen, 1998; Aidun and Clausen, 2010; Krüger 
et al., 2017). This method considers a fluid as an ensemble of micro-
scopic fluid particles moving around and colliding with each other, and 
describes fluid motion by the spatio-temporal evolution of the velocity 
distribution function of the fluid particles. The macroscopic fluid den-
sity, velocity, and pressure derived from low-order moments of the 
distribution function satisfy the Navier–Stokes equations. The method, 
which has been used successfully in applications ranging from 
isothermal single-phase flows to fully compressible multiphase flows, 
can be considered an established solver for the Navier–Stokes equations. 
As noted by Kareem (2020), it is gaining popularity in engineering ap-
plications, such as simulating air flow around buildings (Lenz et al., 
2019; Han et al., 2020) and ships (Syms, 2008), and aerodynamics of 
complex structures (Andre et al., 2015; Islam et al., 2017; Buffa et al., 
2021). Recently, the lattice Boltzmann method was confirmed to 
perform well in simulating atmospheric boundary-layer flows (Ahmad 
et al., 2017; Inagaki et al., 2017; Onodera et al., 2021; Feng et al., 2021) 
and atmospheric surface-layer flows including plant canopies (Wata-
nabe et al., 2020, 2021). The computational parallelism shared by the 
lattice Boltzmann algorithm and the Lagrangian particle model makes 
their combination appropriate for high-performance computations of 
drifting snow. The algorithm’s flexibility in terms of incorporating 
complex boundaries is advantageous for simulations of drifting snow 
over obstacles with complex geometries or time-varying micro--
topographies (e.g., snowdrifts) produced by erosion and deposition, and 
thus will be beneficial for future applications for snow engineering. The 
application of the lattice Boltzmann method to the simulation of drifting 
snow was initiated by Tanji et al. (2021), who focused on simulating the 

wind field around various type of fences and the resulting snowdrift 
formation. For that purpose, their model did not consider particle–sur-
face interactions or the effects of particle drag on the flow, making it 
unable to reproduce the self-sustaining nature of drifting snow. 

In this paper, we first describe a new Lagrangian particle dispersion 
model that is fully coupled with the lattice Boltzmann method and in-
cludes particle–surface interaction processes. The adopted lattice 
Boltzmann code, which uses the central-moment-based multi-relaxa-
tion-time collision scheme (Geier et al., 2006, 2015), is the same as that 
used by Watanabe et al. (2020, 2021) to simulate canopy turbulence, 
and achieves performance comparable to a Navier–Stokes model 
(Watanabe, 2004, 2009). Aerodynamic entrainment, rebounding, and 
splash entrainment are included as particle-feeding processes on the 
snow bed, similar to previous drifting-snow models. We examine the 
model’s ability to reproduce the properties of drifting snow, including 
instantaneous and statistical features, and investigate the dynamics of 
saltating particles. Finally, we elucidate the relationship between the 
horizontal structures of drifting snow and turbulence in the vicinity of 
the surface. 

2. Model description 

A Cartesian coordinate system is adopted, in which x, y, and z denote 
the streamwise, lateral, and vertical directions, respectively. Both the 
vector notation and the component form of a vector, i.e., x = (x,y,z), are 
used in this paper. 

2.1. Large-eddy simulation of the near-surface flow 

The model used for simulating the turbulent flow in the atmospheric 
surface layer has been described in our previous reports (Watanabe 
et al., 2020, 2021); a summary is given here. The model is based on the 
central-moment lattice Boltzmann method in a three-dimensional 27-ve-
locity (D3Q27) lattice system with a uniform lattice spacing Δx. The 
method predicts the spatio-temporal evolution of the distribution 
function fijk(x, t) of the microscopic fluid-particle velocities (ic, jc, kc), 
where the indices i, j, k ∈ {− 1, 0,1} represent the directions of dis-
cretized velocities and c = Δx/Δt denotes the lattice velocity unit, with 
Δt being the timestep. The velocity distribution function is updated at 
each timestep through a collision–forcing step followed by a streaming 
step. 

The collision–forcing step begins with the central moments of the 
distribution function being evaluated by 

κpqr(x, t)=
∑1

i=− 1

∑1

j=− 1

∑1

k=− 1
(ic − u)p

(jc − v)q
(kc − w)

rfijk(x, t), (1)  

where κpqr denotes the central moment of the directional order p,q, r ∈
{0,1,2}, and u, v, and w are the streamwise, lateral, and vertical com-
ponents of the macroscopic velocity u = (u,v,w), respectively. Using the 
multi-relaxation-time collision scheme and a forcing scheme applied in 
the central-moment space, the post-collisional central moments κ*

pqr are 
calculated in terms of the pre-collisional central moments, the macro-
scopic fluid density ρ, the macroscopic velocity, a net volumetric force 
F =

(
Fx,Fy,Fz

)
, and the collisional relaxation coefficients ω1,⋯,ω10 as 

κ*
pqr(x, t) = func(κ, ρ,u,FΔt,ω1,⋯,ω10). (2) 

Details of the above relationship are described in Watanabe et al. 
(2020). The inverse transform of Eq. (1) is then applied to κ*

pqr to 
calculate the post-collisional distribution function f *

ijk, which is trans-
lated to the adjacent grid points in the next streaming step as 

fijk(x+ icΔt, y+ jcΔt, z+ kcΔt, t+Δt)= f *
ijk(x, y, z, t). (3) 

After appropriate boundary conditions have been applied to this new 
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distribution function, the macroscopic variables at the next timestep are 
evaluated from the low-order raw moments as 

ρ=
∑1

i=− 1

∑1

j=− 1

∑1

k=− 1

fijk, (4a)  

ρu=
∑1

i=− 1

∑1

j=− 1

∑1

k=− 1
(ic)fijk +

FxΔt
2

, (4b)  

ρv=
∑1

i=− 1

∑1

j=− 1

∑1

k=− 1
(jc)fijk +

FyΔt
2

, (4c)  

ρw=
∑1

i=− 1

∑1

j=− 1

∑1

k=− 1
(kc)fijk +

FzΔt
2

, (4d)  

p=
ρ
3
, (4e)  

where p is the static pressure. To enable simulations of high Reynolds 
number flows, the subgrid eddy viscosity νe is parametrized using the 
coherent-structure Smagorinsky model of Kobayashi (2005) and incor-
porated into the collisional relaxation coefficients for the even-order 
central moments as 1/ω = 3(ν + νe)+ 1/2, where ν is the molecular 
kinematic viscosity (Watanabe et al., 2020). 

The net volumetric force F is given by the sum of the flow-driving 
force Fdrv, the surface friction Fs, and the particle drag Fp. The driving 
force of the flow is given by 

Fdrv =

(
ρu2

*f
ztop

)

î, (5)  

where u*f is the friction velocity before the onset of drifting (hereafter 
referred to as the freestream friction velocity), which is specified for 
each simulation run, î is the streamwise unit vector, and ztop is the 
height of the computational domain. The surface friction is modelled by 
a modified bulk drag equation that accounts for the momentum sink 
caused by particles drifting below the lowest grid level as 

Fs = − ρCDs
⃒
⃒uh,b

⃒
⃒uh,b

/
Δx −

1
2
Fp,b, (6)  

where CDs is the bulk drag coefficient of the snow surface, uh is the 
horizontal component of the flow velocity, and the subscript b repre-
sents variables at the lowest grid level. The bulk drag coefficient is 
evaluated assuming a logarithmic velocity profile with a prescribed 
roughness length z0s. The particle drag force Fp is the sum of the drag 
forces exerted by all particles within each grid cell, as described in the 
next subsection. 

2.2. Lagrangian model of snow particle motion 

The drifting snow particles are assumed to be spherical, and their 
volume and frontal area are calculated from the particle diameter dp. 
Drifting snow particles, while initially complex in shape, tend to break 
into crystal fragments over the course of multiple impacts on the bed 
(Sato et al., 2008; Comola et al., 2017), and many of which naturally 
become more or less rounded rather than retain their original shape 
(although perfect spheres are rarely observed) (Gordon and Taylor, 
2009). The sublimation of the particles is not considered. 

2.2.1. Equation of motion 
The particles, once seeded to the flow, are accelerated by aero-

dynamic drag and gravity, and so their velocities and positions change 
with time. The particle velocity up and the particle position xp are 
determined by 

dup

dt
=

3
4

cd

dp

ρ
ρp

|Δu|
(
u+us − up

)
− gk̂, (7a)  

dxp

dt
=up, (7b)  

where ρp is the particle density, |Δu| is the magnitude of the velocity 
difference between the particle and the flow, us is the subgrid-scale flow 
velocity experienced by the particle, g is the acceleration due to gravity, 
and k̂ is the vertical unit vector. The particle’s drag coefficient cd is 
evaluated by the empirical formula (White, 1974; Okaze et al., 2018) 

cd =
24
Rep

+
6

1 +
̅̅̅̅̅̅̅̅
Rep

√ + 0.4, (8)  

where Rep = dp|Δu|/ν is the particle Reynolds number. This expression 
is valid for the range 0 ≤ Rep ≤ 2 × 105 (White, 1974). The flow velocity 
at the particle position is calculated from the simulated velocities at 
surrounding grid points by interpolating bilinearly in the horizontal 
directions and logarithmically in the vertical direction. For the particles 
below the lowest grid level zb, the flow velocity is given by u(z) /ũ(zb) =

ln[(z + z0s) /z0s] /ln[(zb + z0s) /z0s], where ũ(zb) is the horizontal 
bilinear interpolation of the flow velocity at z = zb. The subgrid-scale 
flow velocity us is estimated based on the Lagrangian stochastic model 
described by Weil et al. (2004), as detailed in Appendix A. It should be 
noted that while these treatments (interpolation of the resolved veloc-
ities and modelling of the unresolved velocities) attempt to alleviate the 
problem caused by insufficient near-surface resolution, some of the re-
sults presented in subsequent sections may be dependent on these 
treatments. However, as the Stokes number near the surface is quite 
large (see Table 1), the effect of the flow uncertainty on the near-surface 
particle trajectories may not be significant. Comparisons with much 
higher resolution simulations are needed to confirm this and are left for 
future research. 

The first term on the right-hand side of Eq. (7a) (denoted here as ap) 
represents the acceleration induced by the aerodynamic force, the re-
action of which exerts a drag force on the flow. Hence, Fp in the flow 
model described above is given by 

Fp = −
∑

ρp
πd3

p

6
ap, (9)  

where the summation is taken over all particles in each grid cell. 

2.2.2. Aerodynamic entrainment 
The entrainment rate Nae [m− 2 s− 1], defined as the number of par-

ticles picked up by the flow per unit time and unit area, follows the 
excess shear stress rule (Anderson and Haff, 1991) 

Nae = ηρ
(
u2

* − u2
*t
)
. (10) 

Table 1 
Relevant parameters for each case of simulations. u1m is the simulated mean 
wind speed at a height of 1 m. The Reynolds numbers for the flow and particles 
are defined as Reτ = u*fL/υ and Rep,max = u1m〈dp〉/υ, respectively, where L (=4 
m) is the height of the domain. The bulk Stokes number St and the viscous Stokes 
number St+ are defined as St = ρp〈dp〉2u1m/(18ρνL) and St+ =

ρp〈dp〉2u*f
2/
(
18ρν2), respectively.  

u*f [m s− 1] u1m [m s− 1] Reτ Rep,max St St+

0.3 6.3 9.6 × 104 102 0.19 8.9 × 102 

0.35 7.2 1.1 × 105 116 0.22 1.2 × 103 

0.4 8.0 1.3 × 105 129 0.26 1.6 × 103 

0.5 9.3 1.6 × 105 150 0.29 2.5 × 103 

0.6 10.5 1.9 × 105 169 0.32 3.6 × 103 

0.8 12.7 2.6 × 105 205 0.39 6.3 × 103  
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Here, the friction velocity is calculated from u* =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|Fs|Δx/ρ

√
, and the 

threshold friction velocity u*t is estimated by (Bagnold, 1941) 

u*t =A
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ρp − ρ

ρ gdp

√

, (11) 

with the constant parameter A set to 0.18 (Clifton et al., 2006). The 
entrainment coefficient η [N− 1 s− 1] is given by (Clifton and Lehning, 
2008) 

η= kae
4

π〈dp〉2
ρs

ρp
, (12)  

where kae [m2 N− 1 s− 1] is a constant parameter set to 1, ρs is the surface 
bulk density of snowpack (set to 150 kg m− 3), and angle brackets denote 
the mean value. The size of each entrained particle is randomly chosen 
from the size distribution of the snow-bed particles, as specified later. 
Note that ρs is included in Eq. (12) to account for the number of particles 
available on a unit area of the snow-bed surface and should inherently 
depend on the snow-bed conditions. However, in most cases, the 
entrained particles make up only a small fraction of drifting particles 
(see Section 3.2), so the results presented in this paper are not sensitive 
to this value. 

The initial speed vae and vertical angle αae of the entrained particle 
are specified following Clifton and Lehning (2008) in a similar manner 
to Groot Zwaaftink et al. (2014). The magnitude of the initial velocity of 
the entrained particles follows a log-normal distribution with 〈vae〉 =
3.3u* and standard deviation 0.5〈vae〉. The mean angle 〈αae〉 depends on 
the particle size and is given by 

〈αae〉=
π

180

{

75 − 55
[

1 − exp
(

−
dp

1.75 × 10− 4

)]}

, (13) 

where individual realizations of the angle obey a log-normal distri-
bution with a standard deviation of 0.5〈αae〉. The horizontal angle of 
ejection is assumed to be parallel to the flow. The entrained particles are 
launched from a height z = (Δt/2)vaesinαae at a randomly chosen hori-
zontal position within each grid area. 

2.2.3. Rebound 
Snow particles that impact the surface may rebound with a proba-

bility Prbd defined by (Anderson and Haff, 1991; Groot Zwaaftink et al., 
2014) 

Prbd =0.9
[
1 − exp

(
− 2.0

⃒
⃒uimp

⃒
⃒
)]
, (14)  

where uimp [m s− 1] is the impact velocity. The restitution coefficient of 
the rebound rrbd is assumed to obey a normal distribution with mean 
0.55 and standard deviation 0.1, based on the measurements of Araoka 
and Maeno (1981), Kosugi et al. (1995), and Nishimura and Hunt 
(2000). The rebound speed is calculated as rrbd

⃒
⃒uimp

⃒
⃒, and the vertical 

angle of rebound follows an exponential distribution with a mean value 
of 45◦ (Kok and Renno, 2009), while the horizontal angle is parallel to 
the incident particle. 

2.2.4. Splash 
The splash entrainment is the most unknown of the particle feeding 

processes. The number of splashed particles can be estimated relatively 
reasonably well under the constraints of conservation of kinetic energy 
and momentum. However, there are only a few examples of systematic 
measurements of particle splashing speeds and angles on snow surfaces 
(e.g., Sugiura and Maeno, 2000), even though they should be affected by 
many factors, such as snow-bed conditions, properties of impacted 
particles, impact speed, impact angle. Therefore, statistical relationships 
established for soil and sand particles from many laboratory and nu-
merical studies are substituted here. 

The number of particles that are splashed from the snow bed upon a 
single particle impact Nspl is modelled based on conservation of energy 

and momentum as (Gauer, 2001; Comola and Lehning, 2017) 

Nspl =min(Nse,Nsm), (15a)  

Nse = max

[(
1 − δrbdr2

rbd − ϵf
)
mimp

⃒
⃒uimp

⃒
⃒2

〈mspl〉〈
⃒
⃒uspl

⃒
⃒2〉 + 2ϕ

,0

]

, (15b)  

Nsm =max

⎡

⎣

(
1 − δrbdrrbd − μf

)
mimpuimp

〈mspl〉〈
⃒
⃒uspl

⃒
⃒〉〈cos αspl〉〈sin βspl〉

, 0

⎤

⎦, (15c)  

where Nse and Nsm are the numbers estimated from energy and mo-
mentum conservation, respectively. Here, δrbd = 1 if rebound occurs and 
δrbd = 0 otherwise, ϵf (=0.66; Ammi et al., 2009) and μf (=0.35; Rice 
et al., 1995) are the fractions of kinetic energy and momentum dissi-
pated during the impact, respectively, mimp is the mass of the impacted 
particle, mspl, uspl, αspl, βspl are the mass, velocity, and vertical and 
horizontal angles of the splashed particle, respectively, and ϕ [J] is the 
inter-particle cohesion energy, as determined below. The product 〈 
cosαspl〉〈sinβspl〉 is set to be constant at 0.8 (Comola and Lehning, 2017). 
The initial motion of a splashed particle is defined by the initial speed, 
which follows an exponential distribution with 〈

⃒
⃒uspl

⃒
⃒〉 = 0.25

⃒
⃒uimp

⃒
⃒0.3 

(Anderson and Haff, 1991), the vertical angle, which obeys an expo-
nential distribution with 〈αspl〉 = 50◦ (Kok and Renno, 2009), and the 
horizontal angle, which is chosen from a normal distribution around the 
impact direction with a standard deviation of 15◦ (Xing and He, 2013). 
The size of the splashed particle is randomly taken from the size dis-
tribution of the snow-bed particles. 

Fig. 1 shows the relationship between the impact speed and the 
number of ejected particles (including both rebounded and splashed 
particles) obtained from Monte Carlo simulations of the particles’ 
impact–rebound and splashing for different values of ϕ. We followed the 
procedure of Comola and Lehning (2017), except in using the rebound 
and splash models described above and the particle size distribution 
defined by Eq. (16). As the results for ϕ = 3 × 10− 9 J best fit the 
wind-tunnel measurements reported by Sugiura and Maeno (2000), this 
is taken as the standard value. However, considering the uncertainty in 
ϕ, which varies depending on the snow-bed conditions, non-cohesive (ϕ 

Fig. 1. Mean number of particles ejected (rebounded and splashed) upon a 
single impact calculated by Monte Carlo simulations using Eqs. (14)–(16) with 
different cohesive energies. Wind-tunnel measurements reported by Sugiura 
and Maeno (2000) are also plotted for comparison, with error bars indicating 
standard deviations. Each simulation performed at 0.1 m s− 1 intervals in impact 
speed involves 106 particles impacting the surface at randomly sampled angles 
ranging from 5 to 15◦. The sizes of impacting and splashing particles are 
randomly chosen from the gamma distribution defined by Eq. (16). 
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= 0) and highly cohesive (ϕ = 1 × 10− 8 J) conditions are also considered 
in the following simulations. Incidentally, when the same Monte Carlo 
simulation is performed for single-size non-cohesive particles (e.g., ho-
mogeneous sand), the relationship Nspl ≈ 0.5

⃒
⃒uimp

⃒
⃒ is observed. This is 

consistent with previous measurements and numerical simulations (see 
Fig. 3a of Comola and Lehning, 2017). 

2.2.5. Numerical implementation 
Aerodynamic entrainment is invoked at a constant time interval Δtae, 

with the number of entrained particles calculated from Eq. (10) using 
the shear stress ρu2

* at each surface grid point averaged over Δtae. By 
considering the impact–rebound process every timestep, the kinetic 
energy and momentum remaining after all impact events that occur in 
each grid area are accumulated over the time interval Δtspl, and these 
accumulated amounts are used to calculate the number of splashed 
particles at each Δtspl. Particles entrained (or splashed) at the same time 
and location are treated as a group of Nae (or Nspl) single-sized particles 
that share the same velocity and position, and each group’s trajectory is 
tracked thereafter. The number of particles belonging to each group (Nae 
and Nspl) retains the fractional part of the number calculated from Eqs. 
(10) and (15), which is ignored if the number is less than 1. The model 
code is written in the NVIDIA CUDA language, and the individual tra-
jectories are computed in parallel using graphics processing units. 

2.3. Simulation setup 

A computational domain of 12.8 × 12.8 × 4.0 m3 with a uniform grid 
resolution of 0.05 m is used to simulate drifting snow over a flat and 
homogeneous snow surface under six different wind conditions of u*f =

0.3, 0.35, 0.4, 0.5, 0.6, and 0.8 m s− 1. The top boundary at ztop = 4 m is a 
rigid free-slip wall for the airflow, while the bottom boundary (snow 
surface) is a rigid wall with friction, as explained in Section 2.1. These 
rigid-wall boundaries are represented in the lattice Boltzmann algorithm 
by the half-way specular reflection of the wall-ward components of the 
velocity distribution function (Watanabe et al., 2020, 2021). The hori-
zontal boundaries are set to be periodic to mimic a developed 
surface-layer flow over a homogeneous surface. The flow simulations 
are initialized with a uniform streamwise velocity field with 
small-magnitude random perturbations of the vertical velocity compo-
nent. After the turbulence statistics (e.g., mean flow velocity, Reynolds 
stress, turbulent kinetic energy) reach a steady state, the snow-particle 
processes are activated to permit the drifting snow to develop over 

time. The timestep is the same for the flow and particle motions, and 
decreases linearly with the freestream friction velocity: from 0.236 ms 
for u*f = 0.3 m s− 1 to 8.84 × 10− 2 ms for u*f = 0.8 m s− 1. The time 
intervals of aerodynamic entrainment and splash entrainment are set to 
Δtae = Δtspl = 86Δt, which corresponds to 20 ms for the case of u*f =

0.3 m s− 1. With these settings, the number of particle groups tracked 
ranges from 106 to 107 depending on u*f , with each group typically 
containing 100 to 103 particles. During the simulations, snow particles 
moving upward beyond the top boundary and stopping (not rebound-
ing) at the surface are discarded. 

The density and kinematic viscosity of the air are set to ρ = 1.34 kg 
m− 3 and ν = 1.24 × 10− 5 m2 s− 1, respectively, and the density of snow 
particles is set to ρp = 918 kg m− 3. Following Nemoto and Nishimura 
(2004), the size distribution of the erodible particles on the snow bed is 
given by a gamma distribution with 〈dp〉 = 2 × 10− 4 m, expressed as 

f
(
dp
)
=

dα− 1
p

βαΓ(α) exp
(

−
dp

β

)

, (16)  

where α = 5 and β = 4 × 10− 5 m are constant parameters and Γ(α)
denotes the gamma function. The mean particle mass used in Eq. (15) 
can be evaluated using 〈d3

p〉 = α(α + 1)(α + 2)β3. Prior to the simula-
tions, a look-up table of cumulative probabilities for 2 × 10− 5 m in-
tervals up to the maximum diameter of 6.2 × 10− 4 m is prescribed using 
this formula. The roughness length of the surface is assumed to remain 
constant at z0s = 2.3 × 10− 4 m (Kondo and Yamazawa, 1986; Gromke 
et al., 2011). Table 1 summarizes the parameters related to the flow and 
particles simulated with these settings. Obviously, the flow is fully tur-
bulent, with conditions such that the particles behave as tracers in most 
of the domain (if the gravity is negligible) and as ballistic projectiles in 
the region very close to the surface. 

Preliminary simulations confirmed that the total mass transport rate 
reaches steady state by 200 s from the onset of the drifting. Therefore, 
datasets for post-processing are saved every 1 s for 200–1000 s. Aver-
aging these 800 datasets has also been confirmed sufficient to obtain 
stable statistics on the fully developed state in which the flow–particle 
interactions are in equilibrium at all heights in the domain. Unless 
otherwise stated, the mean values at a given height are calculated as 
time averages of the horizontal mean values obtained from all datasets, 
and are denoted by an overbar. Additionally, the particle-related sta-
tistics are evaluated at logarithmically equidistant heights, with a finer 
resolution near the surface than the flow statistics evaluated at each grid 
level. 

Fig. 2. Vertical–streamwise distribution of particle groups 10 s after the onset 
of drifting for different values of u*f : (a) 0.35, (b) 0.5, and (c) 0.8 m s− 1. All 
particle groups (see Section 2.2.5) in the lower half of the computational 
domain are rendered as dots with opacity linearly related to the total cross- 
sectional area of the particles in each group. 

Fig. 3. Horizontal distribution of particle groups obtained at the same instant 
as for Fig. 2 for the case of u*f = 0.5 m s− 1, shown over the half-width of the 
computational domain. 
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3. Results and discussion 

3.1. Instantaneous visualization 

For a visual inspection of the simulated drifting snow, Figs. 2 and 3 
present the vertical and horizontal distributions of the particle groups 
obtained 10 s after the onset of drifting. Fig. 2 (and its animated version, 
provided as Supplementary Video 1) illustrates the differences in the 
height and density of drifting snow (and the resulting visibility reduc-
tion) and their growth rates over time at different flow velocities. Fig. 2 
also displays the spatial density patterns tilting downstream in the near- 
surface region, which are affected by coherent eddies developing in the 
sheared surface-layer flow. The horizontally fluctuating structures 
commonly seen in the aeolian particle transfer phenomena occurring 
near the surface (Bass, 2008) are illustrated in Fig. 3 (their temporal 
variations can be seen in the animation provided as Supplementary 
Video 2). The spatial relationship between the horizontal patterns in the 
concentration of drifting particles and the instantaneous flow velocities 
near the surface will be discussed in Section 3.3. 

3.2. Statistics and vertical structure of the drifting snow 

3.2.1. Total mass transport rate 
The total mass transport rate Q [kg m− 1 s− 1], calculated by inte-

grating the streamwise mass flux with respect to height, is compared 
with wind-tunnel measurements and empirical formulas derived from 
such measurements in Fig. 4a. All these wind-tunnel experiments were 
conducted on smoothly conditioned snow surfaces. Here, for Sørensen’s 
(2004) formula, the parameters proposed by Vionnet et al. (2014) are 
used and the friction velocity at the impact threshold is assumed to be 
0.26 m s− 1, which is the equilibrium surface friction velocity obtained 
from the simulation with ϕ = 0 for the lowest u*f (=0.3 m s− 1). 

The simulated values of the transport rate at equilibrium shown in 
Fig. 4a (filled symbols) are generally smaller than those measured in 
wind tunnels, especially for small u*f cases; this trend is similar to that 
reported by Melo et al. (2022). This trend at low u*f may be partly 
attributable to the intermittency of the aerodynamic entrainment. In the 
simulations for low-wind-speed conditions, the surface friction veloc-
ities do not exceed the threshold simultaneously at all locations because 
of the higher thresholds for larger particles and the heterogeneity of 
near-surface turbulent flow. In such a situation, drifting snow occurs 
only where coherent eddies from aloft enhance the aerodynamic 
entrainment followed by the splash entrainment of snow-bed particles, 
as reported by Okaze et al. (2018) and as will be discussed in Section 3.3. 
This situation contrasts with the wind-tunnel experiments conducted 
under relatively uniform wind conditions. Meanwhile, even in the 
non-cohesive case (ϕ = 0), where the modelled mass transport rate is 
highest, halving the entrainment threshold (Eq. (11)) or doubling the 
entrainment coefficient (Eq. (12)) only increases the transport rate by 
35% and 20% at u*f = 0.3 m s− 1, respectively, and does not compensate 
for the difference from the wind-tunnel results (figure not shown). This 
is likely due to the negative feedback between wind and particles; as the 
number of airborne particles increases, wind speed near the surface 
decreases and the entrainment is reduced. 

More importantly, the large sensitivity of Q to ϕ in the low-u*f region 
indicates the importance of accurate parameterization for the splash 
entrainment at low wind speeds. As shown in Fig. 1, ϕ = 3 × 10− 9 J is the 
value optimized through comparison with direct measurements of the 
impact–splash process on a snow bed (Sugiura and Maeno, 2000), but 
the model results using this value nevertheless underestimate the 
transport rates measured at low wind speeds. The wind-tunnel experi-
ment of Sugiura and Maeno (2000) was conducted at − 15 ◦C to avoid 
rapid sintering between snow particles, but the actual cohesiveness 
during the experiment is unknown. Indeed, the model results for ϕ =
0 are close to Sørensen’s formula, but the impact threshold used for this 
formula is higher than that (0.2 m s− 1) measured by Nishimura and Hunt 

(2000), indicating the model’s lower splashing efficiency, even with ϕ =
0. Incidentally, Anderson and Haff’s (1991) numerical experiments for 
uniform sand grains of 230 μm yielded Nspl ≈ 1.5

⃒
⃒uimp

⃒
⃒ (three times 

larger than the results of our Monte Carlo simulations), and Gauer 
(2001) used this relationship to parameterize the number of splashed 
particles. Therefore, we attempted a simulation using three times the 
Nspl value obtained for ϕ = 0. The resulting mass transport rate during 
the initial 30 s at u*f = 0.3 m s− 1 is shown by an asterisk in Fig. 4a, and is 
close to the formula derived by Nishimura and Hunt (2000). However, 
these results greatly exceed the field observations shown in Fig. 4b. 
Hence, further study is needed on the model’s reproducibility for 

Fig. 4. Total mass transport rates simulated using the different cohesive en-
ergies: (a) comparison with wind-tunnel measurements plotted versus the 
freestream friction velocities; (b) comparison with field observations plotted as 
a function of the mean wind speed at a height of 1 m. In (a), some model results 
have been shifted horizontally for clarity; the edges of the error bars indicate 
the initial transport rates averaged for the first 30 s of each simulation; an 
asterisk denotes the initial transport rate calculated using three times the Nspl 
value for ϕ = 0; open circles and open triangles denote wind-tunnel measure-
ments by Sugiura et al. (1998) and Okaze et al. (2012), respectively; the lines 
represent the empirical formulas of Nishimura and Hunt (2000) and Sørensen 
(2004) for snow, and Bagnold’s (1941) formula for sand; grey shading indicates 
the range of u*t for the snow-bed particles, and the vertical long-dashed line 
indicates the u*t corresponding to the mean diameter. In (b), asterisks denote 
the transport rates observed by Kobayashi et al. (1970) and filled circles and 
open triangles represent those observed in the saturation zone and in the 
neutral zone, respectively, by Takeuchi et al. (1975) and Takeuchi (1980). 
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wind-tunnel experiments at low wind speeds. 
The mass transport rate varies significantly with time, especially 

under high-wind-speed conditions. The transport rate increases rapidly 
after the onset of drifting and decreases gradually as the near-surface 
flow slows down because of the particle drag, eventually approaching 
equilibrium. The model results shown by filled symbols in Fig. 4a are the 
equilibrium transport rates obtained after the flow and particle statistics 
reached the steady state throughout the computational domain. There is 
a significant decrease from the initial transport rates (average of the first 
30 s), as indicated by the error bars. These overshoot phenomena have 
been predicted numerically by Anderson and Haff (1991) and confirmed 
experimentally by Shao and Raupach (1992), who reported that the 
minimum distance for saltation to reach equilibrium is approximately 
15 m. Even longer fetches (>60 m) were required for the snow transport 
rate to reach equilibrium in the two-dimensional numerical simulations 
reported by Zhang and Zhou (2023). Thus, wind-tunnel experiments 
generally measure the transport rates at some point in the early stages of 
saltation growth. The model results are therefore in reasonable corre-
spondence with the wind-tunnel measurements, at least for large u*f . 

Fig. 4b presents a comparison with field data observed on flat snow 
surfaces with sufficiently long fetches. The data of Kobayashi et al. 
(1970) were observed 700 m downwind from the edge of a homoge-
neous snow surface and were generally obtained under low values of the 
surface hardness, except for the two smallest values of Q, for which the 
data were obtained under hard surface conditions. Takeuchi et al. 
(1975) and Takeuchi (1980) presented data observed in the saturation 
zone (350 m downwind from the edge), where snowdrift accumulation 
had just begun to develop in the leeward direction, and data observed in 
the neutral zone, where neither erosion nor deposition were observed. 
As shown in the figure, the model results are within the scatter of the 
observed data. Under low-wind-speed conditions, the results for the 
non-cohesive case are consistent with Kobayashi’s data from the loose 
surface and tend to approach the hard surface data as the cohesive en-
ergy increases. Under high-wind-speed conditions, the three cases of 
different cohesive energies tend to converge on a single curve, which are 
most consistent with Takeuchi’s data from the saturation zone, where 
the drifting snow and the air flow are likely to be in equilibrium. 

3.2.2. Vertical profile of horizontal mass flux 
Fig. 5 shows vertical profiles of the mean horizontal mass flux q(z). In 

Fig. 5a, the fluxes simulated using different cohesive energies at u*f =

0.3 m s− 1 are compared with the data observed in Antarctica by Nishi-
mura and Nemoto (2005) under a similar wind condition of u*f = 0.28 m 
s− 1. Considering that the conditions of the snowpack at the time of 
observation are unknown, and that the measurement uncertainty may 
be large, especially at lower heights where the vertical gradient of the 
density and velocity of particles is large, the modelled fluxes are in 
reasonable agreement with the observations, both in magnitude and 
profile shape. It is notable in Fig. 5a that the reduction in the vertical 
gradient of flux is reproduced above a height of 0.1–0.2 m, similar to the 
numerical simulations of Nemoto and Nishimura (2004), Nemoto et al. 
(2004), and Melo et al. (2022). This kink in the profile reflects the 
transition from saltation to suspension, with the mass fluxes in the 
saltation layer being orders of magnitude larger than those aloft in the 
suspension layer. As confirmed by previous field measurements (e.g., 
Takeuchi, 1980; Nishimura and Nemoto, 2005; Nishimura et al., 2014), 
the vertical profile of the horizontal mass flux of saltating snow particles 
can be approximated by 

q(z)= q0 exp
(

−
z
Lq

)

, (17)  

where q0 is the reference mass flux and Lq is the characteristic decay 
length. The upper height limit for which Eq. (17) fits to the measured 
flux has been used as an estimate of the saltation layer height (Sato et al., 
2001; Okaze et al., 2012). The fitted results for the fluxes simulated with 
ϕ = 3 × 10− 9 J are shown in Fig. 5b, in which the height hq (determined 
as the height where the deviation of Eq. (17) exceeds 10% of the flux) is 
indicated by arrows. The values of q0, Lq, and hq obtained from the 
different u*f cases are listed in Table 2. The height hq increases with u*f at 
smaller velocities, but saturates (or even decreases slightly) at larger u*f . 
The length Lq increases monotonically with u*f , indicating that the 
vertical gradient of the flux (and hence the difference between the 
saltation and suspension fluxes) decreases with u*f , consistent with the 
observations of Nishimura and Nemoto (2005). The saltation flux esti-
mated as q0Lq contributes more than 96% of the total mass transport 
when u*f = 0.3 m s− 1, but the contribution decreases to 82% in the case 
of u*f = 0.8 m s− 1. The relative increase in the contribution of the sus-
pension layer causes an early deviation from the saltation-flux profile 
(Eq. (17)), which is likely to lead to the saturation of hq. 

Fig. 5. Vertical profiles of the mean horizontal mass fluxes: (a) fluxes at u*f = 0.3 m s− 1 modelled with different cohesive energies compared with fluxes observed in 
Antarctica by Nishimura and Nemoto (2005) (u*f = 0.28 m s− 1); (b) fluxes at different u*f modelled with ϕ = 3 × 10− 9 J. In (b), dashed lines represent Eq. (17) fitted 
to the simulated fluxes within the range 0.02 ≤ z ≤ 0.5 m, the arrows indicate the height hq, determined as the lowest height for which the deviation exceeds 10% of 
the flux, and horizontal solid lines indicate the selected heights for which the distribution of particle diameters are shown in Fig. 6. 
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3.2.3. Particle size distribution 
Fig. 6 shows the probability density function (p.d.f.) of the airborne 

particle diameters at different heights (indicated in Fig. 5b). In Fig. 6, 
the solid lines represent all particles, including those both aero-
dynamically entrained and splashed from the snow bed, while the short- 
dashed lines represent aerodynamically entrained particles only. Here-
after, the results correspond to simulations using the standard value of ϕ 
= 3 × 10− 9 J. 

As expected, the particle size distribution is similar to that of the 
snow bed at lower heights, the distribution shifts to smaller diameters as 
the height increases, and the distribution at higher positions extends to 
larger diameters as the wind speed increases. These changes in the p.d.f. 
with height and wind speed are qualitatively consistent with previous 

experimental and observational results (Sugiura et al., 1998; Nishimura 
and Nemoto, 2005). The bimodal shape of the distribution at interme-
diate heights (z = 0.042, 0.088 m), especially prominent at lower wind 
speeds, reflects the contribution of large particles saltating (with 
repeated rebounding) on the surface, which is also common to previous 
simulation results (Nemoto and Nishimura, 2004; Melo et al., 2022). The 
transition probability profiles shown later (Fig. 8) indicate that particles 
drifting from various heights remain in a similar height range for a 
relatively long time. With respect to the particle feeding process, the 
contribution of splash entrainment is generally dominant, except for the 
lowest u*f case of these simulations using ϕ = 3 × 10− 9 J. Additional 
simulations in which rebounding at the surface is supressed by setting 
Prbd = 0 result in the disappearance of the secondary peaks at large di-
ameters, an increase in the contribution of aerodynamic entrainment, 
and a significant decrease in the total mass transport rate (figure not 
shown). These results confirm the importance of a chain reaction in 
which particles saltating with repeated rebounding over the surface 
splash off more particles from the snow bed. 

3.2.4. Net force acting on drifting particles 
In the Lagrangian framework, the acceleration of individual particles 

at different heights can be assessed directly by examining the net 
(aerodynamic and gravitational) force acting on the individual particles. 
The aerodynamic and gravitational forces are evaluated by multiplying 
the first and second terms on the right-hand side of Eq. (7a) by the 
particle mass, respectively. Fig. 7 shows the vertical profiles of the net 
force normalized by the gravitational force acting on each particle, 

Fig. 6. Probability density function (p.d.f.) of airborne particle diameters for different values of u*f : (a) 0.3, (b) 0.4, (c) 0.6, and (d) 0.8 m s− 1. Solid lines represent all 
particles, including both aerodynamically entrained and splashed particles, while short-dashed lines represent only particles originating from the aerodynamic 
entrainment. The long-dashed line denotes the p.d.f. prescribed for the snow-bed particle diameters. 

Table 2 
Parameters relevant to the saltation layer. q0 and Lq are the parameters of the 
exponential profile of the mass flux (Eq. (17)), while hq and hF are the height of 
the saltation layer estimated based on the fit of Eq. (17) and the balance of forces 
acting on individual airborne particles, respectively.  

u*f [m s− 1] q0 [kg m− 2 s− 1] Lq [cm] hq [cm] hF [cm] 

0.3 6.4 × 10− 2 1.6 8.3 9.1 
0.35 0.19 2.1 11.5 10.8 
0.4 0.43 2.4 12.5 12.3 
0.5 1.1 2.8 11.5 13.9 
0.6 1.9 3.2 11.1 14.8 
0.8 3.5 4.0 11.7 16.5  
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averaged over all particles within logarithmically spaced height ranges. 
The figure indicates that the particles at heights below 0.1–0.2 m are, on 
average, accelerated in the streamwise direction and decelerated in the 
vertical direction, thereby producing the streamwise-elongated para-
bolic trajectories observed in the saltation layer (e.g., Sugiura and 
Maeno, 2000). At higher levels, the gravitational force is almost coun-
teracted by the vertical component of the aerodynamic force and the 
streamwise aerodynamic force is generally small (though not zero). This 
force balance implies that the particles at those heights are almost sus-
pended in the air and follow the flow with only marginal acceleration. 
Therefore, the lower height limit hF above which the net force becomes 
sufficiently small provides another estimate of the saltation layer height. 
The arrows in Fig. 7b show hF, estimated as the height at which the 

magnitude of the normalized net force in the vertical direction decreases 
below 0.1 (i.e., 90% of gravity is counteracted by the aerodynamic 
force). The values of hF are also listed in Table 2. In contrast to hq, the 
height hF increases monotonically with u*f . The streamwise component 
of the aerodynamic force near hF increases with wind speed. These facts 
imply that, under higher wind speeds, larger particles jump high, but are 
forced to return to the surface while being accelerated in the streamwise 
direction, forming higher, more elongated parabolic trajectories. Thus, 
the mean saltation height, estimated purely from the motion of indi-
vidual particles, increases with wind speed. It should be noted that an 
arbitrary threshold of 90% is used here because the net force is never 
completely zero at any altitude as long as the gravity is present. 
Therefore, the value of hF should not be taken as an exact value for the 

Fig. 7. Vertical profiles of the mean net force normalized by the gravitational force acting on individual particles, averaged over all particles in logarithmically 
spaced height ranges: (a) profiles over the entire height range; (b) enlarged linear profiles in the dashed rectangular region in (a). Fx and Fz are the streamwise and 
vertical components of the aerodynamic force, respectively, and Fg is the gravitational force. Data are smoothed using a 1-2-1 vertical filter. Arrows in (b) indicate the 
height hF , determined as the lowest height at which the magnitude of the vertical component of the normalized net force decreases below 0.1. 

Fig. 8. Profiles of the vertical transition probability of particles originating from different height ranges over the time interval Δttr = 1 s. Individual panels are for 
different values of u*f : (a) 0.35, (b) 0.5, and (c) 0.8 m s− 1. The numbers associated with each curve denote the total probabilities (%) of particles remaining in the air 
after 1 s. 
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saltation layer height; however, the analysis in the next subsection 
confirms that hF gives a reasonable estimate for the transition height 
from saltation to suspension. 

3.2.5. Vertical transition probability of drifting particles 
The mean vertical displacement over time of particles at each height 

can be expressed by the transition probability: 

Ptr
(
Δttr, z, zorg

)
=

∑n

j=1
Nptr

(
tj + Δttr, z|tj, zorg

)

∑n

j=1
Np
(
tj, zorg

) , (18)  

where Nptr is the number of particles moving from the original height 
zorg to height z during the time interval Δttr (=1 s), Np is the total number 
of particles present at zorg at time tj when the j-th dataset is saved (see 
Section 2.3), and n is the number of datasets. The vertical profiles of Ptr 
for different ranges of zorg are shown in Fig. 8, illustrating the difference 
in particle fates depending on their original positions. After an interval 
of 1 s, most particles at levels greater than the estimated height of the 
saltation layer (zorg > 0.15 m) remain suspended in the air, and exhibit a 
tendency to disperse further upward. As the wind speed increases, the 
probability distribution of these particles extends not only upward, but 
also to lower heights, and the total probability decreases. This is because 
larger particles, which are more abundant in the air under higher wind 
speeds (Fig. 6), fall faster, as implied by the greater negative vertical 
force balance shown in Fig. 7. Most particles at heights close to the 
surface (zorg < 0.07 m) settle to the surface within 1 s, while the 
remaining particles continue saltating at a height of 0.01–0.04 m, pro-
ducing the minor peak of Ptr, with a very small percentage of particles 
translated to higher levels. This minor peak of Ptr disappears in the 
rebound-inhibited simulations (figure not shown), indicating that it is 
composed of particles that impacted the surface and rebounded or 
repeated the process. At intermediate levels near the saltation layer 
height (0.07 < zorg < 0.15 m), approximately 60% of the particles reside 
in the air after 1 s and tend to displace upward, which represents the 
transition of particle motion from the saltation mode to the suspension 
mode (Bagnold, 1941). 

3.3. Horizontal structure of the drifting snow 

3.3.1. Instantaneous correspondence with the near-surface flow 
As often experienced (and as shown in Fig. 3 and the animation 

provided as Supplementary Video 2), snow drifting over a flat surface 
forms streamwise-elongated structures, which “merge, bifurcate, and 
meander laterally back and forth as they move downwind” (Bass, 2008). 
These are called “snow streamers” or “snow snakes”. The spatial rela-
tionship between snow streamers and the instantaneous flow field is 
exemplified in Fig. 9, in which the horizontal positions of large number 
densities calculated including all particles present within the height 
range 0.01 < z ≤ 0.1 m in the saltation layer are marked on the hori-
zontal map of instantaneous flow velocities at the lowest grid level (z =
0.025 m). The particle number density ρn [m

− 3] at a given height follows 
a roughly log-normal distribution (figure not shown). Thus, the plotting 
criterion is set as (logρn)

’
> σLN, where (logρn)

’ represents a deviation of 
logρn from its instantaneous horizontal mean and σLN is the standard 
deviation of logρn. Hereafter, a prime (́) indicates deviation from the 
instantaneous horizontal mean. The correspondence between the 
streamers and the instantaneous flow field is remarkable, with rows 
containing multiple marks concentrated in the narrow areas of updrafts 
(wʹ > 0) with slow streamwise velocities (uʹ < 0). Those areas adjacent 
to or enclosed by a larger-scale longitudinal band of fast streamwise 
velocities (e.g., 2.5 < y < 5.5 m) are particularly favourable for the 
formation of streamers. In contrast, in a slower-velocity band (e.g., y <
2.5 m), the marks are sparser, despite a comparable number of updraft 
regions. 

3.3.2. Quadrant analysis 
Fig. 10 shows the joint p.d.f. of the turbulent velocity components uʹ 

and wʹ, calculated using all datasets for u*f = 0.5 m s− 1. In this figure, the 
grey shading with thin dashed line contours represents the joint p.d.f. of 
the velocities obtained from all grid points at the lowest level. As ex-
pected, in the near-wall boundary layers (Wallace, 2016), uʹ and wʹ 

sampled from the lowest grid points are negatively correlated with each 
other, constituting the negative Reynolds stress at that level, and their p. 
d.f. is largely distributed in the quadrants of ejection (uʹ < 0, wʹ > 0) and 
sweep (uʹ > 0, wʹ < 0). The overlaid bold line contours in Fig. 10a 
represent a similar p.d.f., but for grid points where the particle number 

Fig. 9. Instantaneous distribution of dense particle clouds detected in the saltation layer (square dots) plotted over the coloured distribution of the perturbation flow 
velocities at the lowest grid level: (a) streamwise component and (b) vertical component (u*f = 0.5 m s− 1). Dashed lines indicate a large-scale band of fast 
streamwise velocities. 
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density in the height range 0.01 < z ≤ 0.1 m is sufficient to satisfy 
(logρn)

’
> σLN. Compared with the p.d.f. for the entire flow, the joint p. 

d.f. for velocities at these selected grid points is skewed towards the 
ejection quadrant, indicating that strong ejection events are involved in 
the formation of particularly dense particle clouds, which constitute the 
snow streamers seen in Fig. 9. The skewness towards the ejection is 
similar to that found by Berk and Coletti (2020) from their wind-tunnel 
experiments using size-selected glass spheres. To investigate whether 
there is any correspondence between the development of dense particle 
clouds and the particle feeding process from the snow bed, a similar 
analysis is performed for the number densities calculated using only 
“freshly entrained” and “freshly splashed” particles, i.e., particles that 
were entrained and splashed at their most recent occurrence (with in-
tervals Δtae and Δtspl), respectively, and have not yet experienced a 
rebound. For this analysis, the respective number densities ρne and ρns 
are calculated over a height range 0 < z ≤ 0.01 m, which is below the 
range used to calculate ρn. The subscripts e and s denote the freshly 
entrained and freshly splashed particles, respectively. The results are 
shown in Fig. 10b, where the bold contours represent the joint p.d.f. of 
velocities obtained at grid points where 

(
logρne,s

)’
> σLNe,s is satisfied. 

The figure clearly shows that aerodynamic entrainment is associated 
with the most energetic sweep motions. This is because only the strong 
stresses caused intermittently by these motions exceed the entrainment 
threshold, ρu2

*t, in the equilibrium state where the surface stresses are 
(on average) reduced from the freestream value by the drag of airborne 
particles. Consequently, the contribution of aerodynamic entrainment to 
the total particle supply is only marginal, as already shown by Fig. 6; this 
is also evidenced through this analysis by the mean number density of 
the freshly entrained particles (ρne ∼ 105 m− 3) being two orders of 
magnitude smaller than that of the freshly splashed particles (ρns ∼ 107 

m− 3). Although the p.d.f. of velocities related to the large densities of 
freshly splashed particles (solid line contours in Fig. 10b) is closer to the 
background p.d.f. of the entire flow, the distribution is still skewed to-
wards the sweep quadrant, because the faster flow of the sweep motions 
accelerates the particles impacting the surface more efficiently. The 
skewness of the p.d.f. for the splash entrainment tends to be smaller for 
higher u*f cases, but does not show a preference for the ejection quad-
rant in any scenario (figure not shown). Thus, the dense particle clouds 

(or streamers), which are associated with ejection motions, are not a 
direct result of local enhancement of the particle supply at the same 
locations. Rather, they are formed when airborne particles near the 
surface, regardless of their origin, gather in narrow regions under the 
effects of the flow very close to the surface. 

3.3.3. Composite of the flow inducing dense particle clouds near the surface 
The mean spatial structure of the flow causing the dense particle 

clouds near the surface can be deduced by compositing the conditionally 
sampled flow variables as 

〈φʹ〉
(
rx, ry, z, zr

)
=

∑n
j=1
∑mj

i=1φʹ( xi
r + rx, yi

r + ry, z
)

∑n
j=1mj

, (19)  

where 〈φʹ〉 denotes an ensemble average of any flow variable φʹ sampled 
around detection position 

(
xi

r, yi
r, zr
) (

i = 1, ⋯, mj
)
, for which the 

detection condition is satisfied in the j-th dataset, rx and ry are the 
streamwise and lateral displacements from the detection position, 
respectively, n is the total number of datasets, and mj is the number of 
detected points in the j-th dataset. In this analysis, to avoid redundant 
sampling of the same particle cloud, the detection condition for each 
dataset is (logρn)

’
> 2σLN, while ρn is calculated over a height range 0.01 

< z ≤ 0.1 m, as above. 
Fig. 11 shows the horizontal distributions of the composited flow 

field sliced at z = 0.025 m. The figure implies that the dense particle 
clouds generally occur near the upstream ends of internal ejection re-
gions (uʹ < 0 and wʹ > 0), where near-surface lateral flows converge 
towards the low-pressure area. The composited low-speed (uʹ< 0) re-
gion is elongated in the streamwise direction, measuring about 0.9 m 
(length) × 0.1 m (width). This is longer than the average streamer length 
(0.5 m) estimated by Huang and Wang (2016) from numerical simula-
tions in a similar setting to that employed in our study, suggesting that 
dense particle clouds are generally encompassed within the flow struc-
ture that produces them. The streamwise–vertical section at ry = 0 
shown in Fig. 12 indicates that the cores of the dense particle clouds tend 
to be located on the leeward side of tall high-pressure zones (Fig. 12c), 
which are presumably induced by the stagnation of the streamwise 

Fig. 10. Joint p.d.f. of the turbulent velocity components uʹ and wʹ obtained at the lowest grid level in the case of u*f = 0.5 m s− 1. σu and σw are the standard 
deviations of uʹ and wʹ, respectively. The grey shading and thin dashed line contours represent the joint p.d.f. of all data at the same level. In (a), the solid line 

contours denote the joint p.d.f. calculated only from data at grid points where the particle number density within 0.01 < z ≤ 0.1 m satisfies (log ρn )́ > σLN. In (b), the 
solid and dashed line contours denote the joint p.d.f. from data at grid points where the number densities within 0 < z ≤ 0.01 m of the freshly splashed particles and 
freshly entrained particles exceed the threshold, respectively. The line contours are drawn for 25, 50, and 75% of the maxima. 
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velocity component near the surface (Fig. 12a). The height of the 
low-speed region is confined to within 0.2 m, in contrast to the updraft 
(wʹ> 0) region, which extends higher up and farther downstream 
(Fig. 12b). These vertical distributions are consistent with the 
wind-tunnel results of Berk and Coletti (2020), who showed that parti-
cles are concentrated in high strain regions of the near-surface turbulent 
flow. The cross-streamwise–vertical sections sliced at different stream-
wise positions shown in Fig. 13 indicate that the internal low-speed 
region is situated between a pair of regions of mean streamwise 
vorticity with opposite signs. Near the surface, lateral flows from the 
high-speed regions on both sides converge, inducing the updraft in the 
middle, and diverge sideways above the vorticity cores. The centre of the 
vorticity pair lifts slightly downstream. It should be noted, however, that 
this ensemble-averaged result does not imply the dominance of 
counter-rotating vortex pairs in the near-surface region. In individual 
realizations, small-scale single vortices are more commonly identified 
near the boundary between the inner low-speed region and the sur-
rounding high-speed regions (figure not shown). 

With respect to the formation mechanism of snow streamers, Huang 
and Wang (2016) focused on the suction of small-scale vortices, which 
may attract saltating snow particles. In contrast, the results of our 
analysis show that the near-surface velocity patterns produced by the 
cooperative effects of distributed small-scale vortices, rather than indi-
vidual vortices themselves, are more closely correlated with the snow 
streamers. This view does not contradict the finding of Huang and Wang 
(2016) that snow streamers form in regions flanked on both sides by 
large-magnitude vorticity (see Fig. 8b in their paper). 

3.3.4. Relationship with large-scale turbulent motion 
The existence of streamwise-elongated low-speed regions near the 

surface, known as low-speed streaks, is a ubiquitous feature of near-wall 
boundary-layer flows (Robinson, 1991). The composited flow system 
described in the previous subsection closely resembles the structure of 
the near-wall characteristic eddies obtained from direct numerical 
simulations of channel flow (Moin and Moser, 1989), such as an ejection 
accompanied by a low-speed streak sandwiched by counter-rotating 
streamwise vortices that lift downstream, although their spatial scale 
is much smaller, as the typical streak spacing (known to be 100 viscous 
wall units) is 1.5–4 mm under the conditions of this study. The present 
analysis indicates that the near-surface streak structure, which is known 
to develop through the interaction with small-scale eddies, plays an 
essential role in the formation of snow streamers, even in high Reynolds 
number flows in the atmospheric surface layer. 

Another remarkable feature is that the composited low-speed streaks 
are enclosed by large high-speed (uʹ > 0) regions that span most of 
Figs. 11–13. This reflects the occurrence of streamers being preferen-
tially biased towards the large-scale high-speed bands, as exemplified in 
Fig. 9. Regarding the particle supply, a larger number of particles are 
seeded to the flow in the large-scale high-speed regions than in their 
low-speed counterparts, owing to the enhanced aerodynamic entrain-
ment resulting from larger shear stresses and the increased splashing 
caused by the acceleration of impacting particles, as indicated by 
Fig. 10b. The entrained and splashed particles are then gathered by the 
near-surface convergent flow to form dense particle clouds in the in-
ternal low-speed streaks. The activity of near-surface eddies associated 
with the low-speed streaks is modulated by the coherent turbulent 

Fig. 11. Horizontal cross-sections at the lowest grid level (z = 0.025 m) of the ensemble-averaged flow around the position of particularly dense particle clouds 
detected at that level: (a) streamwise velocity component 〈ú 〉/u*f , (b) cross-streamwise velocity component 〈v́ 〉/u*f , (c) vertical velocity component 〈wʹ〉/ u*f , and (d) 

pressure 〈pʹ〉/
(

ρu2
*f

)
, obtained from the case of u*f = 0.5 m s− 1. Solid and dashed line contours represent positive and negative values, respectively, and are drawn at 

intervals of (a) 0.15, (b) 0.1, (c) 0.05, and (d) 0.1. 
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motion of much larger spatial scales—the small-scale velocity fluctua-
tions near the surface are amplified within the high-speed regions of the 
larger coherent motions (Marusic et al., 2010). As demonstrated by 
Andreolli et al. (2023), the nonlinear energy transfer between large- and 
small-scale motions, most likely through the stretching of small eddies, 
is involved in the modulation mechanism. Besides the direct conse-
quence of the more intense internal near-surface flow system, the 
enhanced activity of small-scale eddies causes the meandering motions 
of the internal low-speed streaks. Both effects lead to the intensification 
and fluctuation of the snow streamers formed in the large-scale high--
speed regions. 

In the atmospheric boundary layers, very large eddies impinging 
from aloft generate wide high-speed regions (or very large-scale sweeps) 
near the surface, causing very high spatio-temporal intermittency in the 
near-surface velocity fluctuations (Hunt and Morrison, 2000). Such 
eddies are generally scaled with the height of the outer or internal 
boundary layers and/or regulated by nearby topography. Field obser-
vations have shown that the velocity fluctuations associated with such 
large eddies have a significant impact on the concentration and flux of 
drifting particles. Aksamit and Pomeroy (2018a,b) observed that the 
initiation of intensive blowing-snow transport and the increase of the 
concentration and particle number flux near the surface corresponded to 
the passage of low-frequency high-speed motions. They also highlighted 
the role of these high-speed motions that amplify the high-frequency 
fluctuations in blowing snow density by modulating high-frequency 
velocity fluctuations. Bass and Sherman (2005) identified that 
extremely large transport of saltating sand particles occurs in the form of 
ensembled streamers (similar to that seen in the high-speed band in 
Fig. 9) during the periods of intermittent high-speed airflow. The latter 
authors estimated that the spatial scale of sand streamers is determined 
by the eddies scaled with the height of the internal boundary layer 
developing over the observation site. Although our simulations do not 

include the influence of such boundary-layer scale eddies, the results are 
consistent with these observations in the sense that the large-scale 
high-speed motions increase the particle supply from the surface and 
activate the small-scale eddies that contribute to the formation of indi-
vidual streamers. 

4. Conclusions 

We have described a Lagrangian particle dispersion model coupled 
with large-eddy simulation code based on the central-moment lattice 
Boltzmann method. This model was used to simulate drifting snow in a 
neutrally stratified turbulent flow within the atmospheric surface layer. 
The model reproduces typical features of drifting snow observed in the 
field, such as the dependency of the total mass transport rate on the flow 
velocity, the kink in the vertical profile of the mass flux near the salta-
tion layer height, and the variations in particle size distribution with 
flow velocity and height from the snow bed. 

The saltation layer height, determined directly from the inspection of 
forces acting on the airborne particles, increases monotonically with the 
flow velocity (or the shear stress) above the saltation layer. This is 
different from conventional estimates, which tend to saturate with 
increasing flow velocity. The vertical transition probability, which was 
introduced to evaluate the mean tendency over time of the vertical 
displacement of individual particles at each height, supports the gradual 
transition from saltation to suspension around the saltation layer height 
estimated by the present method. 

Regarding the horizontal structure of the saltation layer, snow 
streamers were found to be closely associated with the appearance of 
small-scale low-speed streaks formed in the instantaneous flow field 
near the surface. Particularly dense particle clouds are most often found 
near the upstream ends of these low-speed streaks, the result of particles 
being concentrated by near-surface convergent flows. From a larger- 

Fig. 12. Streamwise–vertical cross-sections at ry = 0 of the ensemble-averaged flow around the position of particularly dense particle clouds detected at the lowest 

grid level: (a) streamwise velocity component 〈ú 〉/u*f , (b) vertical velocity component 〈wʹ〉/u*f , and (c) pressure 〈ṕ 〉/
(

ρu2
*f

)
, obtained from the case of u*f = 0.5 m 

s− 1. Solid and dashed line contours represent positive and negative values, respectively, and are drawn at intervals of (a) 0.2, (b) 0.1, and (c) 0.2. The grey line 
contours in (b) and (c) replicate the contours of 〈ú 〉/u*f shown in (a). 
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scale perspective, the low-speed steaks appear almost everywhere near 
the surface, whereas dense particle clouds are selectively associated 
with those streaks that are enclosed by high-speed regions of much 
larger spatial scale. The reasons for this preference are the greater par-
ticle supply through the aerodynamic and splash entrainment processes 
(resulting from the higher flow velocities) and the enhanced activities of 
small-scale turbulent eddies (most likely owing to increased stretching) 

in the large-scale high-speed regions. Although the limited computa-
tional domain used in this study prevents generalization, we speculate 
that the preferential occurrence of snow streamers, associated with the 
large-eddy-modulated low-speed streaks in the vicinity of the snow 
surface, may be one of the fundamental mechanisms behind the spatio- 
temporal intermittency of the drifting snow in the surface layers. Further 
analyses on whether saltating particles affect the near-surface flows and 

Fig. 13. Cross-streamwise–vertical cross-sections of the ensemble-averaged flow around the position of particularly dense particle clouds detected at the lowest grid 
level sliced at different rx: (a) 0 m, (b) +0.1 m, (c) +0.2 m, (d) +0.3 m, and (e) +0.4 m, obtained from the case of u*f = 0.5 m s− 1. The colour shading indicates 〈ú 〉/
u*f , the vectors represent 

(
〈v́ 〉 /u*f , 〈wʹ〉 /u*f

)
, and the solid and dashed line contours drawn at intervals of 0.05 represent positive and negative values of the 

streamwise vorticity 〈ωx́〉/
(
u*f /Δx

)
, respectively. 
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their modulation in response to the large-scale coherent motions are left 
for future research. 

In terms of model developments, this study only dealt with an ideal 
situation, i.e. drifting of spherical particles over a flat and homogeneous 
snow surface under a neutrally stratified atmosphere. Therefore, a 
reasonable extension of the model enabling its application to more 
realistic situations would be to include the effects of the buoyancy and 
sublimation of particles with the aid of appropriate solvers for temper-
ature and humidity in the flow. Consideration of non-spheric particles is 
also an issue for future research. In such studies, a model of the drag 
coefficient (e.g., Tagliavini et al., 2021) and general parametrizations of 
aerodynamic lift forces for particles with complex geometry should be 
explored. Moreover, using the adaptability of the lattice Boltzmann 
method to complex boundaries, it is feasible to extend the model to 
simulate the time-varying surface topographies created by erosion and 
deposition (around obstacles or on flat surfaces), and the resulting 
feedback to the turbulent flow. Possible applications of the model 
framework are not limited to the dispersion of particulate matter such as 
dust, pollen, sprays, and other aerosols, but also include Lagrangian 
trajectories of any passive scalar quantities represented as massless 
particles. 
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Appendix A. Subgrid-scale velocity experienced by particles 

In the calculation of the particle trajectory, not only resolved fluid velocities but also unresolved, subgrid-scale (SGS) velocities are considered (Eq. 
(7)). The SGS velocities experienced by the particles are estimated based on the Lagrangian stochastic model proposed by Weil et al. (2004) with some 
modifications as 

dus =
− us

τs
dt+

1
2

(
1
σ2

s

dσ2
s

dt
us +∇σ2

s

)

dt +

̅̅̅̅̅̅̅̅

2σ2
s

τs

√

dξ, (20)  

where τs is the timescale of the SGS velocity, σ2
s is the SGS velocity variance evaluated in the large-eddy simulation model, and dξ is a vector composed 

of Gaussian white noises ξi ∈ N(0,dt). Following Knorps and Pozorski (2021), τs is parametrized as 

τs = aτ
min(Δx, z + z0s)

2σs
, (21)  

where aτ, which is a parameter representing the effect of the particle inertia, is assumed constant (=0.5) considering the large Stokes numbers in the 
near-wall region of our simulations (Table 1). For the particles below the lowest grid level zb, σs is modified as follows: 

σs(z)= σs(zb)f1(z) + σnwf2(z) (0< z< zb), (22)  

where σnw is the near-wall standard deviation of velocities estimated as σnw = 1.7u based on DNS results of channel flow (e.g., Moser et al., 1999) and 
f1 and f2 are logarithmic interpolation functions defined as 

f1(z)=
ln(z + z0s) − ln(z0s)

ln(zb + z0s) − ln(z0s)
, (23a)  

f2(z)=
ln(zb + z0s) − ln(z + z0s)

ln(zb + z0s) − ln(z0s)
. (23b)  

For the levels very close to the surface, z+(zu/ν)<20, a linear dumping of z+/20 is applied to the value calculated from Eq. (22). 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jweia.2024.105783. 
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