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Abstract
A double-distribution-function lattice Boltzmann model for large-eddy simulations of a 
passive scalar field in a neutrally stratified turbulent flow is described. In simulations of the 
scalar turbulence within and above a homogeneous plant canopy, the model’s performance 
is found to be comparable with that of a conventional large-eddy simulation model based 
on the Navier–Stokes equations and a scalar advection–diffusion equation in terms of the 
mean turbulence statistics, budgets of the second moments, power spectra, and spatial two-
point correlation functions. For a top-down scalar, for which the plant canopy serves as a 
distributed sink, the variance and flux of the scalar near the canopy top are predominantly 
determined by sweep motions originating far above the canopy. These sweep motions, 
which have spatial scales much larger than the canopy height, penetrate deep inside the 
canopy and cause scalar sweep events near the canopy floor. By contrast, scalar ejection 
events near the canopy floor are induced by coherent eddies generated near the canopy top. 
The generation of such eddies is triggered by the downward approach of massive sweep 
motions to existing wide regions of weak ejective motions from inside to above the canopy. 
The non-local transport of scalars from above the canopy to the canopy floor, and vice 
versa, is driven by these eddies of different origins. Such non-local transport has significant 
implications for the scalar variance and flux budgets within and above the canopy, as well 
as the transport of scalars emitted from the underlying soils to the atmosphere.
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1  Introduction

A plant canopy produces a peculiar internal environment through physical and biologi-
cal processes. The resulting microclimate exerts an essential influence on the energy 
balance, plant physiology, hydrological processes (including snowpack and frozen soil), 
and ecological processes in the local plant community, thereby affecting the spatio–tem-
poral variations in exchanges of momentum and scalars such as heat, water vapour, car-
bon dioxide, other gasses, and particulate matter between the canopy elements and air 
within the canopy layer. Turbulent eddies transporting momentum and scalars to/from 
the atmosphere above serve to renew the microclimate inside the canopy and convey the 
physical and biological influences of vegetated surfaces to the atmosphere, thus bridg-
ing from the microscale interactions between plants and the microclimate to the mes-
oscale or larger-scale land–atmosphere interactions.

Over recent decades, numerous studies based on experiments, theoretical considera-
tions, and numerical analyses have investigated the turbulent transport process within 
and above plant canopies, and the common view that coherent eddies play a signifi-
cant role in the transport of momentum and scalars has been established (Raupach and 
Thom 1981; Finnigan 2000; Brunet 2020). The coherent eddies, which have vertical 
scales comparable to or often larger than the canopy height, bring about the direct trans-
port between the canopy layer and the atmosphere above through sweep and ejection 
motions. Such non-local transport phenomena, the occurrence of which is identified 
by vertically coherent ramp signals in scalar time traces measured within and above 
plant canopies (Bergstöm and Högström 1989; Gao et  al. 1989), occur irrespective of 
the local vertical gradients of mean quantities (i.e. wind speed, scalar concentrations), 
thereby causing secondary wind-speed maxima (Shaw 1977) and counter-gradient sca-
lar fluxes (Denmead and Bradley 1985). Accordingly, the gradient–diffusion model (or 
K-theory) inside the canopy has been found to be inadequate (Katul et  al. 2013). The 
non-local transport should be treated explicitly to ensure a realistic representation of 
the canopy microclimate, although the gradient–diffusion model (including the lower-
level second-order closure models by Mellor and Yamada 1974) is adequate in scenarios 
where an approximate representation of the net vertical transport suffices. These include 
the bulk parametrization of momentum and scalar exchanges over vegetated surfaces 
(Kondo and Watanabe 1992; Watanabe 1994; Takata et al. 2003), analysis of the energy 
balance during rainfall interception events (Watanabe and Mizutani 1996), and model-
ling the dynamic interactions between the microclimate and plant community (Watan-
abe et al. 2004; Toda et al. 2009).

Higher-order closure models (Wilson and Shaw 1977; Meyers and Paw U 1986, 1987; 
Watanabe 1993; Katul and Albertson 1998; Tanaka 2001) and Lagrangian approaches 
(Raupach 1989; Siqueira et al. 2000; Ueyama et al. 2014) have been adopted as alterna-
tives to the gradient–diffusion model. In principle, the terms of third-order (or triple) 
moments and the pressure transport in the higher-order closure models, as well as the 
‘far-field’ diffusion term in the Lagrangian approaches, represent the non-local trans-
port. However, these terms are parametrized heuristically based on dimensional consid-
erations and mathematical consistency and are reported to be insufficient in some situ-
ations (Katul and Chang 1999). As a thorough and precise understanding of the nature 
and mechanism of the non-local transport phenomena is still lacking, it is important to 
obtain deeper insights through analyses of the phenomenology of canopy turbulence, 
as in previous studies (Raupach 1981; Katul et al. 1997a, b, 2018; Cava et al. 2006) in 
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which the third-order moments are linked to the sweep–ejection cycle that dominates 
the momentum and scalar transport (Finnigan 2000).

Although many studies have been conducted to elucidate the turbulence structure 
observed near the canopy top (Raupach et  al. 1996; Finnigan 2000; Brunet 2020), less 
attention has been paid to the eddies that penetrate through the canopy and transport 
momentum and scalars directly to/from near the canopy floor from/to above the canopy, 
thereby promoting the deepest non-local transport within the canopy. A better understand-
ing of such canopy-penetrating transport would also have important agricultural and bioge-
ochemical implications, such as accurate predictions of water/soil temperatures underneath 
crop canopies (Kuwagata et al. 2008), the specification of soil respiratory flux above a for-
est ecosystem using a measurement of stable isotopes (Murayama et al. 2010), emissions 
of methane from permafrost covered by forests (Iwata et al. 2015), and pathways whereby 
volatile organic matter emitted from forest soils influence the activities of cloud condensa-
tion nuclei in the atmosphere (Müller et al. 2017). Therefore, the present study focuses on 
the nature of the coherent eddies that transport passive scalars to/from near the canopy 
floor from/to the atmosphere above the canopy, as well as the eddies that cause the pre-
dominant fluctuations in the scalar concentrations near the canopy top.

As a tool for numerical simulations of the scalar turbulence within and above the can-
opy, a new code for the double-distribution-function lattice Boltzmann method is intro-
duced. The lattice Boltzmann method is a relatively recent technique in computational 
fluid dynamics (Chen and Doolen 1998; Aidum and Clausen 2010). The method predicts 
the spatio–temporal variation of the distribution function of the microscopic fluid-particle 
velocities based on the discretized Boltzmann equation, which includes the key processes 
of collision, forcing, and streaming. The macroscopic variables (fluid density, velocity, and 
pressure) derived from low-order moments of the distribution function are mathematically 
shown to satisfy the weakly compressible Navier–Stokes equations (Krüger et  al. 2017). 
Recently, the method has been applied to the atmospheric boundary-layer flow over urban 
canopies by Onodera et al. (2013, 2021), Ahmad et al. (2017), and Inagaki et al. (2017). 
For the airflow within and above a plant canopy, Watanabe et  al. (2020) reported that a 
large-eddy simulation (LES) using a central-moment-based lattice Boltzmann method 
reproduces the turbulent velocity field as well as a conventional LES model based on the 
Navier–Stokes equations. This motivated us to extend the lattice Boltzmann method to the 
advection and diffusion processes of a passive scalar within and above the plant canopy. 
The scalar field in a turbulent flow is expressed by a double-distribution-function model, in 
which the distribution function of the scalar density is treated separately to the velocity dis-
tribution function (Shan 1997; He et al. 1998). Regarding memory consumption, the lattice 
Boltzmann method uses a number of prognostic variables (i.e. 7–27 discretized distribu-
tion functions depending on the lattice system adopted) to predict a single scalar quantity. 
In this respect, a conventional model based on the advection–diffusion equation for the 
macroscopic scalar density is more advantageous. However, the lattice Boltzmann method 
employs an almost local algorithm that is suitable for parallel computations, uses a rela-
tively simple implementation of boundary conditions, and provides an exact representation 
of the streaming, which enables advection calculations with higher numerical accuracy. 
Therefore, the performance of this method is worth testing.

This paper describes a lattice Boltzmann model for simulating a passive-scalar field in 
a neutrally stratified turbulent flow within and above a plant canopy (Sect. 2). The model 
is first evaluated with respect to a conventional LES model based on the Navier–Stokes 
equations and the advection–diffusion equation for a scalar field (Sect. 3.1). Then, the char-
acteristics of the eddy motions that contribute to the scalar variance and fluxes near the 



42	 T. Watanabe et al.

1 3

canopy top (Sect. 3.2) and the spatio–temporal structure of coherent eddies that promote 
non-local scalar transport to/from deep inside the canopy from/to the atmosphere above are 
examined (Sect. 3.3).

2 � Models

A Cartesian coordinate system is adopted in which x , y , and z denote the streamwise, lat-
eral, and vertical directions, respectively. The velocity components in these coordinates are 
represented as u , v , and w . Vector and tensor notation, such as � = ( x1 , x2 , x3) = (x , y , z ) and 
� = ( u1 , u2 , u3) = (u , v , w ), is also used. Unless otherwise stated, repeated indices in the ten-
sor notation imply a summation over all possible values of the index.

2.1 � Navier–Stokes Model

A reference simulation is performed using a LES model (Watanabe 2004, 2009), which 
is based on the Navier–Stokes equations, the incompressible continuity equation, and 
the advection–diffusion equation for a scalar. The subgrid-scale (SGS) turbulence kinetic 
energy (TKE) is modelled using a separate prognostic equation. The subgrid eddy viscosity 
is calculated from the SGS TKE, and a constant subgrid turbulent Schmidt number ( = 1∕3 ) 
(Deardorff 1971) is used to parametrize the subgrid eddy diffusivity of the scalar. The plant 
canopy is represented by distributed sinks/sources of momentum and the scalar. The set-up 
for the reference simulation is the same as that of the lattice Boltzmann model (described 
later), except that the exact value of the flow-driving force and the domain size are different 
(Watanabe et al. 2020). The velocity statistics obtained from the reference simulation were 
reported in our previous study (Watanabe et al. 2020), and the scalar statistics are included 
herein. This reference model, including the advection–diffusion equation for a scalar, is 
hereafter referred to as the Navier–Stokes model.

2.2 � Lattice Boltzmann Method

In the following, the equations of the lattice Boltzmann method are presented using the lat-
tice-unit system, in which all variables are normalized by the lattice spacing Δx , timestep 
Δt , reference fluid density �0 , and reference scalar density s0 . Therefore, in the normalized 
equations, these reference scales read Δx = Δt = �0 = s0 = 1 and are eliminated whenever 
there is no possibility of confusion.

2.2.1 � Central‑Moment‑based Model for Airflow

The model used to simulate airflow has been fully described by Watanabe et al. (2020); a 
summary is repeated here. The basic framework of the model is the central-moment-based 
lattice Boltzmann method in a three-dimensional 27-velocity (D3Q27) lattice system. Here 
and hereafter, the notation DdQq represents the lattice type, with d indicating the num-
ber of spatial dimensions and q the number of discrete microscopic velocities considered. 
The model describes the fate of the distribution function fijk(�, t) of discrete microscopic 
velocities (ic, jc, kc) , where the indices i, j, k ∈ {−1, 0, 1} represent the direction of the dis-
cretized velocities and c = Δx∕Δt (= 1) denotes the lattice velocity unit.



43Coherent Eddies Transporting Passive Scalars Through the Plant…

1 3

The distribution function and the macroscopic flow variables are updated by the following 
procedure. At every timestep, the central moments of the distribution function �pqr , are calcu-
lated by

where the indices p, q, r ∈ {0, 1, 2} are the directional orders of moments, and the sum of 
the indices ( p + q + r ) defines the formal order of the moments. Using the multi-relax-
ation-time collision scheme and a forcing scheme applied in the central-moment space, 
the post-collisional central moment �∗

pqr
 is obtained in terms of the pre-collisional central 

moments, the macroscopic fluid density and velocity, a net external force � =
(
Fx,Fy,F�

)
 

working on the fluid, and the collisional relaxation coefficients �1,… ,�10 as

The functional form of Eq. 2 is described in Watanabe et al. (2020). The inverse transform 
of Eq. 1 is then used to calculate the post-collision distribution function f ∗

ijk
 , which is trans-

lated to the adjacent grid points in the next streaming step as

After the application of appropriate boundary conditions to this new distribution function, 
the macroscopic variables at the next timestep are calculated from

where p is the macroscopic static pressure.
To enable simulations of high-Reynolds-number flows, the stress exerted by the SGS 

motion is modelled as

(1)�pqr(�, t) =

1∑

i=−1

1∑

j=−1

1∑

k=−1

(ic − u)p(jc − v)q(kc − w)rfijk(�, t),

(2)�∗
pqr

(�, t) = func
(
�, �, �,�,�1,… ,�10

)
.

(3)fijk(x + icΔt, y + jcΔt, z + kcΔt, t + Δt) = f ∗
ijk
(x, y, z, t).

(4)� =

1∑

i=−1

1∑

j=−1

1∑

k=−1

fijk,

(5a)�u =

1∑

i=−1

1∑

j=−1

1∑

k=−1

(ic)f ijk +
Fx

2
,

(5b)�v =

1∑

i=−1

1∑

j=−1

1∑

k=−1

(jc)fijk +
Fy

2
,

(5c)�w =

1∑

i=−1

1∑

j=−1

1∑

k=−1

(kc)fijk +
Fz

2
,

(6)p =
�

3
,

(7)��� = −��SGS

(
�u�

�x�
+

�u�

�x�

)
+

2

3
kSGS��� ,
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where ��� represents the SGS stress, the indices � and � indicate the spatial coordinates, 
�SGS denotes the subgrid eddy viscosity, and ��� is the Kronecker delta. The SGS kinetic 
energy denoted by kSGS is estimated from

where ck (= 1) is a model constant and u� is a filtered velocity component obtained by

in which uB
�
, uS

�
,… denote the velocities at the six surrounding grid points (Suga et  al. 

2015). The subgrid eddy viscosity is written in terms of the resolved strain-rate tensor S�� 
as

where CSGS is a parameter determined according to the coherent-structure Smagorinsky 
model of Kobayashi (2005). The evaluated value of �SGS is reflected in the lattice Boltz-
mann algorithm through the relaxation coefficient �1 for a group of second-order central 
moments (Watanabe et al. 2020) as

The other relaxation coefficients of the central-moment-based collision model are set as 
�2 = �6 = �7 = �8 = �10 = �1 and �3 = �4 = �5 = �9 = 1 to reduce the spurious 
numerical viscosity as simply as possible (Geier et al. 2015).

With these parametrizations, the lattice Boltzmann airflow model predicts the macroscopic 
density and velocity that satisfy the filtered continuity equation

and the filtered Navier–Stokes equations

2.2.2 � Single‑Relaxation‑Time Model for a Scalar Field

The model for a scalar field is based on a single-relaxation-time model, i.e. the  
Bhatnagar–Gross–Krook model. This is the most common and simplest collision model 
used in the lattice Boltzmann literature (Chen and Doolen 1998; Aidum and Clausen 
2010). A D3Q19 lattice is adopted as a trade-off between numerical accuracy and com-
putational cost—considerable shortwave noise appeared in the power spectra of the scalar 
density in preliminary simulations using more efficient D3Q7 and D3Q15 lattices, while 
the most accurate D3Q27 lattice requires more memory resources.

(8)kSGS = �ck

(
u� − u�

)2

,

(9)u� =
1

12

(
uB
�
+ uS

�
+ uW

�
+ 6u� + uE

�
+ uN

�
+ uT

�

)
,

(10)�SGS = CSGS(Δx)
2
√

2S��S�� ,

(11)� + �SGS =
1

3

(
1

�1

−
1

2

)
.

(12)
��

�t
+

��u�

�x�
= 0

(13)
��u�

�t
+

��u�u�

�x�
= −

�p

�x�
+

�

�x�

[
�
(
� + �SGS

)(�u�

�x�
+

�u�

�x�

)
−

2

3
kSGS���

]
+ F� .
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In this framework, the spatio–temporal development of the distribution function of a 
scalar, gl ( l = 0,… , 18 ), is described by (Krüger et al. 2017)

where �l is one of the 19 microscopic velocities, defined as �0 = (0, 0, 0), �1,2 = ( ±c , 0, 
0), �3,4 = (0, ±c , 0), �5,6 = (0, 0, ±c ), �7−10 = ( ±c , ±c , 0),�11−14 = ( ±c , 0, ±c ), �15−18 = 
(0, ±c , ±c ), Ql is the increment of gl attributable to the scalar source, and geq

l
 denotes the 

local equilibrium distribution function. The second term on the right-hand side (r.h.s.) of 
Eq. 14 represents the collision process, in which, after receiving the half-influence from 
the scalar source, the function gl gradually approaches geq

l
 at a time-rate defined by the col-

lisional relaxation time �g (Guo et al. 2002). The equilibrium distribution function is given 
by (Chopard et al. 2009)

where s denotes the macroscopic scalar density and El denotes the weighing constants 
E0 = 1∕3 , E1−6 = 1∕18 , and E7−18 = 1∕36 . The source term in Eq. 14 is given by

where qs denotes the scalar source (or sink if negative), rs is the scalar mixing ratio defined 
as rs = s∕� , and �t is the total force, including external forces and the pressure gradient 
force. The quadratic terms in Eq. 15 and the third term in Eq. 16, which are not always con-
sidered in the literature, are included here to minimize spurious terms that would appear 
in the macroscopic advection–diffusion equation reproduced from Eq. 14 (Chopard et al. 
2009). Finally, using the zeroth-order moment of the distribution function, the scalar den-
sity is obtained as (Aursjø et al. 2017)

By considering one-half of the source term here and in the collision term in Eq. 14, the 
overall numerical accuracy is maintained at the second order both in time and space (Guo 
et al. 2002; Krüger et al. 2017).

The scalar diffusion resulting from unresolved eddies is incorporated via an SGS gra-
dient–diffusion model as

where �s� represents the SGS scalar flux and �SGS denotes the subgrid eddy diffusivity, 
which is parametrized using the subgrid eddy viscosity and the subgrid turbulent Schmidt 
number Sc as

The effect of the SGS scalar flux is reflected in the simulations by including �SGS in the 
definition of the collisional relaxation time as

(14)gl
(
� + �lΔt, t + Δt

)
= gl(�, t) −

1

�g

(
gl(�, t) +

1

2
Ql(�, t) − g

eq

l
(�, t)

)
+ Ql(�, t),

(15)g
eq

l
= El s

[
1 + 3�l ∙ � +

9

2

(
�l ∙ �

)2
−

3

2
� ∙ �

]
,

(16)Ql = El

[
qs + 3qs�l ∙ � + 3rs�l ∙ �t

]
,

(17)s =

18∑

l=0

gl +
1

2
qs.

(18)�s� = −�SGS
�s

�x�
,

(19)�SGS = �SGS∕Sc.
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where � denotes the molecular diffusivity for the scalar. As a result, the present lattice 
Boltzmann method for a scalar predicts the macroscopic scalar density that is governed by 
the following filtered advection–diffusion equation

2.2.3 � Simulation Set‑up

The numerical set-up for the flow simulation is the same as that used by Watanabe et al. 
(2020). However, for the sake of completeness, it is described here along with the scalar 
field. The simulation of a neutrally stratified turbulent flow within and above an idealized 
uniform plant canopy is performed in a computational domain of 1024, 512, and 80 nodes 
in the streamwise, lateral, and vertical directions, respectively. The grid spacing is 0.1 h 
in all three coordinates, with h being the height of the plant canopy. Thus, the lowest 10 
nodes represent the canopy layer, in which momentum and scalar sinks are distributed. The 
airflow in the computational domain is driven by a streamwise external force Fext , which 
is fixed at Fext∕

(
�0Δx∕(Δt)

2
)
= 10−7 . The top boundary is a rigid free-slip wall at which 

the scalar density is fixed to stop∕s0 = 1 , whereas the bottom boundary underlying the plant 
canopy is a rigid wall, which exerts friction on the flow and absorbs the scalar through the 
SGS fluxes of momentum and the scalar (defined later in Eq. 24), respectively. The hori-
zontal boundaries are periodic for both the flow and scalar. The rigid top boundary for the 
flow and the rigid bottom boundaries of the flow and scalar fields are represented by means 
of halfway specular reflection, in which distribution functions that stream into the domain 
from the wall are given by

where zb is the height of the highest or lowest fluid node, and k and l denote inwards direc-
tions opposite to the directions towards the wall ( k′ and l′ ). This implies that the actual 
wall boundaries are located one-half grid spacing beyond the highest or lowest fluid nodes 
(Lallemand and Luo 2003); all variables ( f  , g , u , v , w , � , p , s ) are collocated at each grid 
node. The top boundary for the scalar distribution function is specified using the method of 
Yoshino and Inamuro (2003) at the highest grid nodes (i.e. one-half grid spacing below the 
top wall) to maintain the given constant scalar density at this height. The effects of plant 
elements on the flow and scalar fields are represented by an instantaneous drag force �d 
and a source of the scalar qs , parametrized as

(20)� + �SGS =
1

3

(
�g −

1

2

)
,

(21)
�s

�t
+

�u�s

�x�
=

�

�x�

[(
� + �SGS

) �s

�x�

]
+ qs.

(22a)f
ijk

(
x, y, zb, t + Δt

)
= f ∗

ijk�

(
x − icΔt, y − jcΔt, zb, t

)
,

(22b)g
l

(
x, y, zb, t + Δt

)
= g∗

l�

(
x − cl�xΔt, y − cl�yΔt, zb, t

)
,

(23a)�d = −�cda|�|�,

(23b)qs = −csa|�|
(
s − sc

)
,
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where cd and cs are, respectively, the drag coefficient and the scalar exchange coefficient 
of canopy elements, a is the leaf area density, and sc is the scalar density at leaf surfaces. 
The canopy parameters are given as ah = 2 (i.e. the leaf area index LAI = 2), cd = 0.2 , 
cs∕cd = 0.2 , and sc = 0 to enable idealized simulations excluding any complexity arisen 
from the canopy morphology and plant physiological factors. The frictional force and the 
scalar source from the underlying ground surface are given by

where CMg and Csg are the bulk transfer coefficients of momentum and the scalar, respec-
tively, sg is the scalar density (set = 0) at the ground surface, and the subscript b indi-
cates the values at the lowest nodes. The bulk transfer coefficients are evaluated assum-
ing logarithmic profiles of the velocity and the scalar density with constant roughness 
lengths for momentum ( z0g ) and the scalar ( zsg ), which are prescribed as z0g∕h = 10−3 and 
zsg∕z0g = 0.1 , respectively, throughout the bottom boundary. The total force in Eq.  16 is 
thus given as �t = �

ext + �d + �g − ∇p . The macroscopic velocity satisfying Eqs.  5 and 
23a is evaluated as (Guo and Zhao 2002)

where 
∼
� denotes the macroscopic velocity calculated without the drag force from Eq. 5, 

while the macroscopic scalar density satisfying Eqs. 17 and 23b is calculated from

in which s̃ denotes the scalar density calculated from Eq.  17 without the scalar source 
term. At the lowest nodes, the expressions cda and csa in these equations are replaced by (
cda + CMg

)
 and 

(
csa + Csg

)
 , respectively, to account for the friction and the scalar source 

from the ground. The subgrid turbulent Schmidt number is assigned a constant value of 
Sc = 0.3 , which is optimized to obtain scalar power spectra comparable with those from 
the Navier–Stokes model in the region well above the canopy.

The simulation is initialized using a uniform streamwise velocity component with 
a small amount of random perturbations in the vertical velocity component and a con-
stant scalar density. The distribution functions are initially equilibrated with these mac-
roscopic variables. After the turbulence statistics reach a steady state, three-dimensional 
data pertaining to the macroscopic variables are collected at constant time intervals of 
13.2h∕u∗ ; a total of 160 samples are used to calculate the statistics presented in the next 
section. Time-sequential three-dimensional data are also collected every 103 timesteps 
( ≈ 0.26h∕u∗ ) during the time periods between ± 104 steps relative to the reference times, 
which are set every 105 steps in the first 3 × 106 steps of the data-sampling period.

The mean values at each height are calculated as the ensemble mean of horizontally 
averaged values obtained at a given height in each sample. In the following section, 
an overbar ( − ) denotes the mean value, while a prime ( ′ ) indicates deviations from the 
mean.

(24a)�g = −�bCMg
||�b||�b,

(24b)qsg = −Csg
||�b||

(
sb − sg

)
,

(25)� =

∼
�

1

2
+

√
1

4
+

1

2
cda|

∼
� |

,

(26)s =
s̃

1 +
1

2
csa|�|

,
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3 � Results and Discussion

The results are presented in dimensionless form using the friction velocity u∗ , which is 
defined at the canopy top by (Watanabe et al. 2020)

and the characteristic scale of the scalar s∗ , estimated from

where the subscript a denotes a mean value averaged over the height range 2 ≤ z∕h ≤ 7.

3.1 � Comparison with the Navier–Stokes Model

The performance of the lattice Boltzmann method is examined by comparing the results 
with those from a reference simulation by the established Navier–Stokes model. As the 
validation for the airflow field has been described elsewhere (Watanabe et al. 2020), the 
focus here is the method’s ability to simulate a scalar field.

3.1.1 � Mean Profiles

Figure 1 shows profiles of the mean scalar density, the resolved scalar variance, and the 
vertical scalar flux, calculated from the lattice Boltzmann and Navier–Stokes results. As a 
constant scalar density is imposed at the top boundary, the mean density and the variance 
from both models increase sharply with height near the top boundary. This boundary con-
dition also produces the vertically constant scalar flux seen above the canopy. There is an 
appreciable difference between the models in terms of the variance in the upper region of 
the domain, which is probably attributable to the difference in the actual implementation of 
the top boundary condition. In the lattice Boltzmann method, the downward-moving com-
ponents of scalar distribution functions are specified at a half grid spacing below the top 
of the domain, whereas the downward SGS flux is evaluated exactly at the top boundary in 
the Navier–Stokes model. As the leaf area is distributed uniformly within the canopy, and 
the scalar density is also constant (= 0) at the surfaces of the canopy elements and ground, 
there are no local maxima or minima in the distribution of the scalar sink/source; conse-
quently, the mean scalar density, scalar variance, and scalar flux decrease monotonically 
with depth into the canopy. The counter-gradient fluxes are not simulated in the present 
settings. Although these features (except for the constant flux) may not be typical for the 
scalar statistics of natural canopy turbulence, the figure indicates that the lattice Boltzmann 
method reproduces the profiles simulated by the Navier–Stokes model, at least in the lower 
half of the domain.

3.1.2 � Budgets of the Scalar Variance and Flux

The budget equation for the resolved scalar variance is written as

(27)u2
∗
= Fext

(
ztop − h

)
∕�0,

(28)s∗ = −
(
s�w� + �s3

)

a
∕u∗,
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where �s denotes the rate at which the resolved variance is converted to the SGS variance, 
which is ultimately dissipated by the molecular diffusion, and Gdiv is a term that arises from 
the compressibility of the fluid, written as

(29)
�

�t

(
s�2

2

)
= 0 = −s�w� �s

�z
−

�s�2w
�

�z
−

�s��s3

�z
− csa|�|ss

�
− �s − Gdiv,

Fig. 1   Profiles of a mean scalar density, b resolved scalar variance, and c scalar flux calculated from the 
lattice Boltzmann method (LBM) (mark and line) and the Navier–Stokes (NS) model (line). Broken lines 
in (c) represent the SGS component of the scalar flux, and grey shading indicates the canopy layer in which 
the leaf area is distributed homogeneously
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This term is included for completeness, although it is generally negligible in the present 
results. The other four terms on the r.h.s. of Eq. 29 represent the rate of variance produc-
tion from the interaction between turbulence and the mean scalar gradient, the resolved 
turbulent transport, the SGS transport, and the loss of variance through the canopy sinks, 
respectively. The SGS dissipation term for the Navier–Stokes model is calculated directly 
from �s = −�

�

s�

(
�s

�

∕�x�
)
 , whereas the sum of �s + Gdiv is evaluated as the residual of 

Eq. 29 for the lattice Boltzmann model. The budget equation for the resolved scalar flux 
can be written as

where the first two terms on the r.h.s. represent the flux production and the vertical trans-
port by resolved turbulence, respectively. The term Dsw

c
 denotes the decorrelation attribut-

able to the canopy drag and sink

and the term Dsw
p

 , which is evaluated as the residual of Eq. 31 for both models, represents 
the other decorrelation effects caused by pressure and the SGS components.

Figure 2 shows profiles of each term in these budget equations calculated from the 
results of the two models. It is clear that the lattice Boltzmann model reproduces the 
production, transport, and dissipation or decorrelation of the scalar variance and flux 
as well as the Navier–Stokes model. In Fig. 2a, both models predict that the scalar vari-
ance is locally in equilibrium for the region z∕h > 1.7 , where the production is almost 
balanced by the SGS dissipation. However, in the region below, the resolved and SGS 
turbulent transport play a role in redistributing the variance from near the canopy top to 
inside the canopy, where the scalar variance is dumped by the distributed scalar sinks. 
Figure 2b indicates that the scalar flux is produced by the interaction between the vari-
ance of the vertical velocity component and the mean scalar gradient, and then lost by 
the decorrelation processes caused by the canopy sink and the total effect of the pres-
sure and SGS components. The turbulent transport plays a more important role than the 
variance budget in redistributing the flux from above the canopy to the interior, result-
ing in a slower equilibration (attained at z∕h ≳ 4 ) than the scalar variance. The produc-
tion terms in both budgets peak sharply at the canopy top, but decrease quickly with 
depth into the canopy as the vertical scalar flux and the variance of the vertical velocity 
component diminish. Close to the canopy floor, the largest sources of the scalar variance 
and flux are provided by the turbulent transport, represented by the third-order mixed 
moments, demonstrating the importance of the non-local scalar transport in this region. 
The significant contribution of the canopy terms to both budgets is the result of the 
parametrizations of the scalar sink and drag force by the canopy elements, whereby they 
are dependent on the instantaneous scalar density and velocities (Eq. 23). If a constant 
sink/source strength and a constant drag force were adopted to represent the plant can-
opy, the canopy terms would vanish from both budgets. Hence, the fluctuations of sink/
source strength should not be overlooked when considering the budgets of the second-
order moments of scalar turbulence in plant canopies.

(30)Gdiv =
1

2

�ws�2

�z
+

ss�

2
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�x�
.

(31)�s�w�
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3.1.3 � Power Spectra of the Scalar

Figure 3 shows horizontal one-dimensional power spectra of the scalar fluctuations at 
selected levels. The simulated spectra generally follow the −5∕3 power law at levels 
above the canopy but have slightly steeper gradients within the canopy, consistent with 

Fig. 2   Profiles of the terms in the budget equations of a scalar variance and b scalar flux simulated by the 
lattice Boltzmann (lines) and Navier–Stokes (marks) models. Ps: production, Tt: turbulent transport, Dc: 
canopy sink, Dp: decorrelation by pressure and SGS components, Tsgs: SGS transport, Dsgs: loss by SGS 
production. The Navier–Stokes results shown here have been smoothed with a 1–2–1 filter
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previous observations and experiments (Maitani and Seo 1985; Poggi et al. 2011; Katul 
et al. 2013). The spectra from the two models overlap with each other for most wave-
numbers. The Navier–Stokes spectra show a signature of the numerical aliasing at the 
largest wavenumbers. Although the horizontal derivatives are calculated by the pseudo-
spectral method with the two-thirds dealiasing rule, the Navier–Stokes model used here 
may be subject to dispersion errors from the vertical finite-differencing, especially in 
the regions of sharp scalar fronts caused by intense vertical motions. Adopting a less-
dispersive advection scheme and/or a more effective SGS diffusion scheme that selec-
tively damps such errors may therefore be desirable. The lattice Boltzmann model, how-
ever, tends to attenuate the scalar fluctuations for wavelengths shorter than about 5 Δ ; 
this considerably enhances the numerical stability, but also requires a finer grid system 
than the Navier–Stokes model to attain a given resolution. In the small wavenumber 
range, the lateral spectra above the canopy have peaks around a wavenumber of 0.06 
h∕�y , whereas the streamwise spectra gradually increase with decreasing wavenumber, 
indicating streamwise structures in the periodic computational domain.

3.1.4 � Two‑point Autocorrelation Functions of the Scalar Density

The spatial structure of the coherent eddies that induce energetic perturbations at a 
given reference height zr can be captured by the two-point correlation function between 
the flow or scalar variables obtained at an arbitrary height and at the reference height. 
This function can be written as

Fig. 3   One-dimensional power spectra of the scalar variance: a streamwise and b lateral spectra calculated 
for four different heights of z∕h = 3.05, 2.05, 1.05, and 0.55. Lines represent the lattice Boltzmann results, 
and marks denote the results of the Navier–Stokes model; Lx and Ly are the streamwise and lateral dimen-
sions of the computational domain; �x and �y are the streamwise and lateral wavelengths. The topmost spec-
tra are aligned to the vertical axis, and others are displaced vertically for clarity (multiplied by 0.5, 0.25, 
and 0.125, respectively)
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where a and b denote the variables, and rx and ry denote the streamwise and lateral sepa-
ration, respectively. Figure 4 shows the spatial distribution of the scalar’s autocorrelation 
function Rss for a reference height just above the canopy at zr∕h = 1.05 . The figure reveals 
that the scalar perturbations at the canopy top are typically associated with spatial dis-
tributions of the scalar density that are streamwise-elongated (Fig. 4a), relatively narrow 
in the lateral direction (Fig.  4b), vertically tall, and tilted downstream (Fig.  4c), similar 
to a previous numerical study by Su et al. (2000) and a field observation by Dupont and 
Patton (2012). Although the highest correlations are confined within a narrow, inclined 
core region residing near the canopy top, a peripheral positive correlation with Rss > 0.1 
extends beyond the figure both downstream and upstream. Downstream of the core region, 
the positive correlation spreads towards far above the canopy, whereas a long tail of posi-
tive correlation continues within the canopy upstream of the core region. The streamwise-
elongated and downstream-tilted features of Rss are similar to those of Ruu reported by 
Watanabe et al. (2020). However, the enhanced vertical gradient of the mean scalar density 
(Fig. 1a), which is caused by the imposed constant top boundary, may somewhat exagger-
ate the vertical extent of the scalar distribution.

The above comparisons confirm that the lattice Boltzmann method is as capable as the 
Navier–Stokes model of simulating the scalar turbulence within and above a plant canopy. 
Although direct comparisons with observations from the actual plant canopies are difficult 
as an idealized uniform canopy is considered here, the models reproduce well-known gen-
eral characteristics of scalar turbulence described in the Introduction. In the following, the 
characteristics and spatial structures of the turbulent eddies that cause energetic perturba-
tions in the scalar density and promote the vertical scalar transport through the canopy are 
investigated using the lattice Boltzmann results.

3.2 � Characteristics of Eddies Associated with Scalar Variance and Flux Near 
the Canopy Top

3.2.1 � Two‑point Cross‑correlation Functions Between Velocity and Scalar

The two-point cross-correlation functions between the velocity components ( u and w ) at 
arbitrary heights and the scalar density ( s ) at the reference height are shown in Fig. 5. 
Both velocity components have high correlations with the scalar density, with the maxi-
mum magnitude of the correlation function being greater than 0.5. The spatial distribu-
tion of Rus exhibits a very large, streamwise-tilted pattern, and that of Rws is vertically 
coherent and horizontally compact. These patterns of Rus and Rws closely resemble the 
spatial structures of Ruu and Rww reported by Watanabe et  al. (2020) and indicate that 
the eddies inducing the predominant perturbations in the streamwise and vertical veloc-
ity components are also responsible for the predominant scalar perturbations near the 
canopy top. Because sweep motions generally dominate in the TKE near the canopy top 
and in the scalar flux under the current settings (see the quadrant analysis shown below), 
the most significant scalar variations should be positive perturbations ( s′ > 0 ) caused 
by eddies with u′

> 0 and w′

< 0 (Fig. 5c). As demonstrated by Watanabe (2004), when 
a high-speed downward (sweep) motion carrying air of high scalar concentration from 

(33)Rab

(
rx, ry, z, zr

)
=

a�
(
x + rx, y + ry, z

)
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above affects the canopy top, the scalar density around the impact position increases 
sharply, producing a ramp signal in the scalar time traces. As the sweep motion trans-
lates downstream faster than surrounding air masses with lower scalar density, a down-
stream-tilted scalar microfront is generated in front of the sweep motion if properly 

Fig. 4   Spatial distribution of two-point autocorrelation functions of the scalar density, Rss , in a horizontal 
cross section at z∕h = 1.05, b vertical–lateral cross section, and c vertical–streamwise cross section. Line 
contours with intervals of 0.1 denote the lattice Boltzmann results, coloured shading represents the Navier–
Stokes results
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aligned with ejection motions (Gao et al. 1989; Fitzmaurise et al. 2004; Finnigan et al. 
2009). After the sweep motion penetrates the canopy layer, the translation speed is 
decelerated by the drag of canopy elements, and a weak reverse flow is induced near 
the ground (Fig.  5a), as pointed out by Su et  al. (2000) and Shaw et  al. (2013). This 
may enhance the long tail of the scalar trailing upstream of the impact position. Thus, a 
combination of the sheared mean velocity above the canopy and the retarded translation 
speed inside the canopy causes the overall structure of the scalar to tilt downstream. The 

Fig. 5   Vertical–streamwise distribution of two-point cross-correlation functions of a streamwise velocity 
component ( Rus ) and b vertical velocity component ( Rws ), referenced to the scalar density at a height just 
above the canopy ( z∕h = 1.05). In c, these functions are also displayed as vectors overlaid on the map of the 
two-point autocorrelation function of scalar density shown in Fig. 4c. The interval of line contours is 0.1
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long tail of the same structure may cause a scalar-sweep event near the canopy floor, as 
will be discussed in Sect. 3.3.

3.2.2 � Quadrant Analysis

The joint probability density function (p.d.f.) of s′ and w′ for four different heights near the 
canopy top is displayed in Fig. 6. The figure also shows bold-line contours of the third-order 
truncated Gram–Charlier distribution (Antonia and Atkinson 1973; Nakagawa and Nezu 
1977), given by

where ŝ = s
�

∕�s and ŵ = w
�

∕�w are the variables normalized by the corresponding standard 
deviations and (mpq = ŝpŵq) ( p, q ∈ {0,1, 2,3} ; p + q = 3 ) are the normalized third-order 

(34)p
(
ŝ, ŵ

)
= G

(
ŝ, ŵ

)
[
1 +

∑

p+q=3

(−1)p+q
mpq

p!q!

�p+qG
(
ŝ, ŵ

)

�ŝpŵq

]
,

Fig. 6   Joint p.d.f.’s of normalized fluctuations of the scalar density and the vertical velocity component at 
four different heights: a z∕h = 0.55, b 1.05, c 1.25, and d 1.55. The coloured shading and dashed line con-
tours represent the simulation results, while the bold line contours denote the third-order truncated Gram–
Charlier distribution
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central moments, or equivalently the normalized third-order cumulants. The function 
G
(
ŝ, ŵ

)
 represents the two-dimensional Gaussian

with Rsw = ŝŵ denoting the correlation coefficient between s′ and w′ . As the covariance 
s
′
w

′  is negative in the present simulation, each quadrant of the coordinate is classified as 
follows:

Quadrant I ( �s > 0 , �w > 0 ) Outward interaction,
Quadrant II ( �s < 0 , �w > 0 ) Ejection,
Quadrant III ( �s < 0 , �w < 0 ) Inward interaction,
Quadrant IV ( �s > 0 , �w < 0 ) Sweep.

Figure 6 shows that the joint p.d.f. at each height has a peak in quadrant II and a gently 
sloping skirt extending towards quadrant IV, consistent with previous analyses (Coppin 
et  al. 1986; Maitani and Shaw1990; Dupont and Patton 2012) and confirming the well-
known fact that sweeps dominate over ejections in the vertical turbulent transport at these 
heights near the canopy top (Finnigan 2000). The truncated Gram–Charlier distribution 
approximates the joint p.d.f. sufficiently far above the canopy ( z∕h = 1.55). However, 
near and inside the canopy layer, the approximation becomes slightly worse, indicating 
the influence of higher-order deviations from the Gaussian. At these heights ( z∕h = 1.25, 
1.05, and 0.75), the actual p.d.f. within a range of small positive values of the ordinate 
( 0 < �w < 1 ) spreads in the negative region of the abscissa towards the minimum of the 
scalar perturbation at each level. A similar tendency has also been observed for the joint 
p.d.f. of temperature and w′ measured in a deciduous forest (Maitani and Shaw 1990), as 
well as that of u′ and w′ measured within the canopy layer of a deciduous forest (Shaw et al. 
1989; Maitani and Shaw 1990) and a model canopy in a wind tunnel (Raupach 1981). Such 
non-Gaussian behaviour near the canopy top is likely to be related to the non-local trans-
port caused by the ejection motions that pump up the air, which has depleted (or enriched) 
scalar density and reduced streamwise momentum, from near the bottom to the top of the 
canopy. This point will be discussed in more detail later in the next section with respect to 
the conditional sampling analysis for scalar ejection events near the canopy floor.

Admitting the third-order Gram–Charlier distribution as a reasonable approximation, it 
is worth examining the third-order moments of s′ and w′ in relation to the eddy motions 
in each quadrant (Raupach 1981; Katul et al. 1997a, b, 2018; Cava et al. 2006). From this 
idealized simulation, pure information can be obtained on how the non-local transports are 
related with the second moments without any complexity arisen from canopy morphol-
ogy, biological factors, and the atmospheric conditions, which are unavoidable in natural 
canopies. Using the third-order Gram–Charlier distribution function, the differences in 
the second moments calculated for each quadrant are analytically related to the third-order 
moments by (Nakagawa and Nezu 1977; Raupach 1981)
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The third-order mixed moments, m12 and m21 , which are related to the vertical transport of 
the variance (s�2) and the covariance s′w′  , respectively, are thus written in terms of the sec-
ond moments in each quadrant as

Figure  7a shows that the third-order moments estimated by these equations closely 
match the actual moments calculated directly from the simulated turbulence field. 
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ŝ̂s
�
III
+
�
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ŝŵ

�
I
+
�
ŝŵ
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ŝŵ
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ŵŵ

�
III
−
�
ŵŵ
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Fig. 7   Vertical profiles of a the normalized third moments of scalar density and vertical velocity compo-
nents and b the ratio of m

12
 to m

21
 . Marks denote the values calculated directly from the lattice Boltzmann 

results, and lines represent the estimations from Eqs. 37 and 38
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Equation 37 implies that the skewness can be viewed as the difference between the vari-
ance of positive and negative perturbations. Similarly, noting that the first terms on the 
r.h.s. of Eq. 38 are generally more important than the second terms (representing the effect 
of skewness), the moments m12 (or m21 ) essentially represent the difference between the 
contributions of eddy motions with positive and negative perturbations of w′ (or s′ ) to the 
covariance. Thus, non-Gaussian motions such as coherent eddies developing in the can-
opy turbulence, which cause asymmetry in the variances and covariances associated with 
downward and upward motions (especially sweeps and ejections), is responsible for the 
large contributions of the turbulent transport terms to the budgets of s′2 and s′w′  (Fig. 2). 
These descriptions are consistent with previous studies, demonstrating that the third-order 
Gram–Charlier distribution predicts many aspects of the joint p.d.f., including the imbal-
ance between the contributions of sweeps and ejections to the transport of momentum and 
scalars and its link to the third-order moments measured in the surface layers, including 
the roughness and canopy layers (Raupach 1981; Shaw et al. 1983; Katul et al. 1997a, b, 
2018). Based on field observations, previous studies have also shown that the moments m21 
and m12 are directly related to the imbalance between sweeps and ejections 

(
ŝŵ

)
IV

−
(
ŝŵ

)
II
 

when the term Rsw

(
m30 − m03

)
 is neglected and a linear relationship between m21 and m12 

is assumed in Eq. 36b (Cava et al. 2006; Katul et al. 2018). However, such simplifications 
are not adequate for the present simulation results, especially above the canopy. This is 
because the term Rsw

(
m30 − m03

)
 is not negligible—m30 has a large value, which may be 

attributable to the constant scalar density imposed at the top boundary—and the contribu-
tions to the covariance from quadrants I and III are not linearly related with those from 
quadrants II and IV thereby causing the ratio m12∕m21 to vary with height (Fig. 7b).

3.3 � Coherent Eddy Transporting Scalars to/from Deep Inside the Canopy

As indicated by Fig. 2, the major source of the variance and flux of the scalar near the can-
opy floor is the non-local turbulent transport driven by large-scale coherent eddies, which 
cause a higher-order non-Gaussian signature in the joint p.d.f. near the canopy top (Fig. 6). 
In this subsection, the structure of canopy-penetrating eddies that drive the non-local trans-
port of scalars between near the canopy floor and above the canopy is examined.

3.3.1 � Instantaneous Snapshot

Figure 8 shows snapshots of the horizontal distributions of velocity fluctuations and the 
scalar sweeps and ejections at a height near the canopy floor ( z∕h = 0.15 ). In contrast to 
the streaky patterns that dominate the velocity distributions above the canopy (Watanabe 
2004, 2009), cellular patterns are noticeable in the distribution of the vertical velocity com-
ponent (Fig. 8a), of which positive and negative areas correspond to the zones of conver-
gence and divergence, respectively, of horizontal velocity components. As indicated by the 
TKE budgets reported in previous numerical studies (Dwyer et al. 1997; Watanabe et al. 
2020), the primary source of TKE near the canopy floor is the pressure transport, that is, 
the kinetic energy of vertical motions caused by the work of pressure. However, as vertical 
motions are blocked by the solid ground surface, horizontal divergence and convergence 
are induced (corresponding to the downdrafts and updrafts, respectively), thus producing 
the cellular patterns. This view is supported by the fact that, in the absence of  strong shear 
deep inside the canopy, the correlation between the pressure and the normal strain rate, 
which redistributes energy among velocity components, provides the major source for the 
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variance of horizontal velocity components at the expense of the vertical velocity compo-
nent near the canopy floor (figure not shown). The tight connection between the pressure 
fluctuations and horizontal velocity components near the canopy floor has been identified 
in field measurements (Shaw and Zhang 1992; Zhang and Amiro 1994) and in numerical 
simulation results (Su et al. 2000; Shaw et al. 2013). In this velocity field, the scalar sweep 
and ejection events are distributed according to the vertical velocity component (Fig. 8b); 
the sweep events can be seen in regions of strong downdrafts and the ejection events occur 
in the cellular convergence zone surrounding the downdrafts.

Fig. 8   Instantaneous distributions in a horizontal plane at z∕h = 0.15 of a velocity fluctuations and b sca-
lar flux in sweep and ejection events. Vectors represent fluctuations of the horizontal velocity components 
( u�∕u∗ , v�∕u∗ ), and colour shading indicates the vertical velocity component w�∕u∗ in (a) and the scalar 
fluxes s�w�∕

(
u∗s∗

)
 by sweep (blue) and ejection (red) motions in (b) with the sign of the ejection flux 

reversed



61Coherent Eddies Transporting Passive Scalars Through the Plant…

1 3

3.3.2 � Ensemble‑averaged Structure of the Scalar Sweeps and Ejections Near 
the Canopy Floor

The mean spatial structure of such canopy-penetrating eddies can be deduced by composit-
ing the conditionally sampled variables as

where ⟨c′⟩ denotes an ensemble average of any variable c′ sampled at time tj + � (with � 
representing a time lag) around detection positions (xi

r
, yi

r
, zr) ( i = 1,… ,mj ), where the 

detection conditions are satisfied in the j-th sample obtained at time tj , rx and ry are the 
streamwise and lateral displacements from the detection position, respectively, n is the 
number of samples, and mj is the number of detected events in the j-th sample. The height 
of the detection position is set close to the canopy floor at zr∕h = 0.15 , and the conditions 
for the sweep and ejection events are set as follows:

Scalar sweep:      w′ < 0  and s�w�∕
(
𝜎s𝜎w

)
< −2,

Scalar ejection:   w′ > 0  and s�w�∕
(
𝜎s𝜎w

)
< −2.

Figures 9 and 10 show vertical slices of the no-lag ( � = 0) composite results for sweep 
and ejection events. Figure 9 indicates that the scalar sweep events near the canopy floor 
most often occur near the trailing (upstream) ends of very large sweep motions passing 
over the canopy. Both the streamwise velocity component and the vertical velocity com-
ponent exhibit a very large pattern spreading above the canopy and tilting downstream. A 
weak negative pressure perturbation is centred inside the canopy, between the downdraft of 
the main sweep motion and a weak updraft slightly upstream from the detection position. 
The pattern of scalar density exhibits a downstream-tilted, tall structure above the canopy 
and a long tail inside the canopy, which is similar to the distribution of the two-point auto-
correlation of s′ shown in Figs. 4 and 5. This similarity can be interpreted as the large-scale 
sweep motions, which cause the predominant perturbations in the scalar density near the 
canopy top, also inducing scalar sweep events near the canopy floor at their trailing ends.

The scalar ejection events are associated with more complex patterns of the streamwise 
velocity component (Fig. 10a). Near the canopy top, above the detection position, there is 
a negative perturbation of u , which continues inside the canopy and shifts downstream as 
it approaches the canopy floor. A shallow positive perturbation is located on the canopy 
floor just upstream of the detection position, and another one appears around rx∕h = 3 − 7 , 
above which a downstream-tilted positive perturbation extends from near the canopy top 
to approximately z∕h = 5 . Further downstream, a negative perturbation of the streamwise 
velocity component extends above the canopy. The patterns in the vertical velocity com-
ponent (Fig. 10b) are characterized by an updraft/downdraft pair in which the updraft has 
the greater magnitude. The shape of the updraft/downdraft pair is narrow and vertically 
coherent, in contrast to the scalar sweep, which has a larger structure tilting downstream. 
The maximum speed of the updraft occurs exactly at the height of the canopy top above the 
detection position, while that of the downdraft appears downstream and is slightly lifted 
from the canopy top. In Fig.  10c, a negative pressure core, which is more intense than 
the sweep case, is also centred at the canopy top between the paired updraft and down-
draft. Figure 10d illustrates that, near the detection position, the coherent updraft carries 
air with lower scalar density from near the canopy floor to above the canopy. On the down-
stream side, a downstream-tilted area with higher scalar density, similar to that seen in the 
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streamwise velocity component, lies above an area of relatively lower scalar density that is 
accompanied by weak positive perturbations of the vertical velocity component.

Horizontal slices of the composite velocity fluctuations at the canopy top ( z∕h = 1.05 ) 
also show that the downdraft region in the sweep case shifts downstream from the 

Fig. 9   Vertical–streamwise cross-sections of the ensemble-averaged structure of eddies causing scalar 
sweep events at a height close to the canopy floor ( zr∕h = 0.15 ): a streamwise velocity component ⟨u�⟩∕u∗ , 
b vertical velocity component ⟨w�⟩∕u∗ , c pressure ⟨p�⟩∕

�
�u2

∗

�
 , and d scalar density ⟨s� ⟩∕s∗ with vectors of 

( ⟨u�⟩∕u∗ , ⟨w�⟩∕u∗ ). Contour intervals are a 0.2, b 0.1, c 0.2, and d 0.3
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detection position, whereas the updraft centre in the ejection case is located exactly over 
the detection position (Fig. 11). The most active parts of the eddy structures are stream-
wise-elongated (for sweeps) or horizontally compact (for ejections), rather than having 
transversally coherent forms. Downstream of both structures, there are streamwise-elon-
gated regions of high- or low-speed streamwise velocity components, which may either 
be caused by the eddies or provide a place for the eddies to develop.

Fig. 10   Same as Fig. 9, but for scalar ejection events
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3.3.3 � Temporal Development of Canopy‑penetrating Eddies

Time sequences of the time-lagged composite of velocities and scalar density are presented 
in Fig. 12 (for the scalar sweeps) and 13 (for the scalar ejections), in which only the lower 
half-domain with a narrower horizontal range is shown. Figure  12 clearly demonstrates 
that the scalar sweep events detected near the canopy floor originate from large-scale 
sweep motions coming from aloft and penetrating the canopy. At the earliest time in the 
figure, the centre of the positive scalar perturbation occurs at a height of around 2h . Con-
veyed by the sweeping motion, the scalar’s positive perturbation approaches the canopy 
and is stretched diagonally to the downstream-upward direction. After the strongest part of 
the sweeping motion has passed over the detection position, the highest part of the scalar 
perturbation touches down on the canopy floor, causing a scalar sweep event to occur at 
this moment. The pattern of scalar perturbation above the canopy then becomes further 
stretched downstream, with a long tail left behind inside the canopy for a similar reason as 
discussed for Fig. 5.

Figure 13 shows that the scalar ejection events near the canopy floor are also trig-
gered by sweep motions from aloft, although the process is not as straightforward as 

Fig. 11   Horizontal cross-sections at a height just above the canopy ( z∕h = 1.05 ) of the ensemble-averaged 
structures of eddies causing a scalar sweep and b scalar ejection events at a height close to the canopy floor 
( zr∕h = 0.15 ). Vectors represent the horizontal velocity components ( ⟨u�⟩∕u∗ , ⟨v�⟩∕u∗ ), and coloured shad-
ing indicates the vertical velocity component ⟨w�⟩∕u∗
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for the sweep case. The earliest time in the figure shows a build-up of air with low 
scalar density, which is associated with low-speed ejective motions with large spatial 
scales (Fig.  13a). The lowest scalar density is seen near the canopy floor upstream 
from the detection position. While a massive sweep motion carrying high scalar densi-
ties from aloft approaches over the low-speed air of low scalar density (Fig.  13b), an 
updraft is generated upstream of the motion, and a reverse flow strengthens inside the 
canopy beneath the motion (caused by the pressure, as discussed in Sect. 3.3.1). As the 
direction of velocity perturbations prior to the detection time is inclined so as to draw 
energy from the mean shear (i.e. ⟨u′⟩⟨w′⟩ < 0 ; Fig.  13c), the downdraft of the sweep 

Fig. 12   Vertical–streamwise cross-sections of time-lagged composite structures for eddies causing scalar 
sweep events at a height close to the canopy floor ( zr∕h = 0.15 ). Time lags are a − 2.34, b − 1.56, c – 0.78, 
d 0, and e + 0.78 in units of h∕u∗. Coloured shading and line contours of an interval of 0.3 indicate the sca-
lar density ⟨s�⟩∕s∗ and vectors represent ( ⟨u�⟩∕u∗ , ⟨w�⟩∕u∗)
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motion itself and the induced updraft are both intensified until they reach a maximum 
shortly after the sweep motion passes over the detection position. The resulting coherent 
updraft pumps up air with the lowest scalar density to above the canopy, causing large 
negative fluctuations of the scalar density near the canopy top (Fig. 13d), as mentioned 
earlier regarding the non-Gaussian nature of the joint p.d.f. (Sect. 3.2.2). Unlike the sca-
lar sweeps, there is only a marginal delay between the occurrence of maximum updrafts 
near the canopy top and the scalar ejection events near the canopy floor. The pattern of 
ejected lower scalar density is then lifted further by the remaining updraft and stretched 
by the mean shear (Fig. 13e).

As the conditional sampling is triggered by the scalar-transporting events at a level 
close to the canopy floor, the largest perturbation in the composited scalar density natu-
rally appears near the canopy floor for both the sweep and ejection events (Figs. 9d and 
10d). The maximum values of the downward velocity component and pressure are also 

Fig. 13   Same as Fig. 12, but for scalar ejection events
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seen inside the canopy for the sweep case (Fig. 9b, c). However, the largest magnitudes of 
the upward velocity component and the negative pressure perturbations in the ejection case 
are observed at the level of the canopy height (Fig. 10a, b). The vertical coherency of these 
variables is more pronounced than for the sweep case, in which the pattern of the vertical 
velocity component is tilted downstream. The intensity of pressure signals is much larger 
for the ejection case. These facts imply that the scalar ejection events are caused around 
the time of maximum development of the coherent eddy generated near the canopy top 
(Fig. 13), and that pressure plays a more important role in inducing the vertical motions 
near the canopy floor in the ejection case.

Finally, it is worth mentioning that the eddy structure obtained by compositing the sca-
lar ejection events near the canopy floor (Fig. 10) resembles that obtained by composit-
ing the prominent updraft/downdraft pairs detected at the canopy top by Watanabe (2009). 
This previous study also identified the complex pattern of the streamwise velocity compo-
nent, the updraft/downdraft pair located upstream and downstream of a vertically coherent 
negative pressure core, respectively, and the downstream-tilted positive and negative per-
turbations of the scalar density. Watanabe (2009) attributed the structure to an ensemble-
averaging of vortical eddies that developed near the canopy top. Although some differ-
ences are appreciable, such as the magnitude of the downdraft being greater than that of 
the updraft and the positive pressure perturbation being located downstream of the neg-
ative pressure core (which are attributable to the completely different detection schemes 
and positions adopted), the similarity of the composite structures is quite remarkable. This 
similarity indicates that the non-local scalar ejections from the canopy floor are driven by 
those coherent eddies that cause predominant perturbations of the vertical velocity compo-
nent near the canopy top.

As for the mechanism of the coherent eddies characterizing the turbulence near the 
canopy top, Finnigan et  al. (2009) explained them as pairs of counter-rotating vortices 
developed through the deflection of initially two-dimensional Stuart vortices originated 
from the inflection instability of the mean wind profile. This formation process was con-
firmed by Gavrilov et  al. (2013). In contrast, Bailey and Stoll (2016) suggested that the 
two-dimensional roller-like structures themselves remain to contribute the Reynolds stress 
near the canopy even in a fully developed turbulence. A reasonable next step would thus be 
to explore whether these eddies directly induce the non-local scalar transport to/from the 
canopy floor or if additional mechanisms are involved.

4 � Conclusions

We have described a double-distribution-function lattice Boltzmann model for simulating a 
passive scalar field in a neutrally stratified turbulent flow within and above a plant canopy 
using the LES approach. The model is composed of a central-moment-based multi-relaxa-
tion-time model for the airflow and a single-relaxation-time model for a scalar. In the simu-
lation of scalar turbulence within and above a homogeneous plant canopy, the performance 
of the model was shown to be comparable to that of a conventional LES model based on 
the Navier–Stokes equations and a scalar advection–diffusion equation. Therefore, users 
can choose either models depending on the available computer resources to perform effi-
cient simulations of the dispersion of passive scalars within and above plant canopies. If 
its larger memory consumption is acceptable, the lattice Boltzmann method described here 



68	 T. Watanabe et al.

1 3

would be a suitable choice for graphics-processing-unit-based computers because of its 
local and continuous memory access.

In the present simulation settings, in which a passive scalar is transferred downward from 
the atmosphere (i.e. a top-down scalar) by a neutrally stratified turbulent flow, the large fluc-
tuations in scalar density that occur near the canopy top are predominantly caused by sweep 
motions that have a spatial scale much larger than the canopy height. The downstream-tilted 
spatial structures of the scalar density continue from inside the canopy up to at least a few 
times the canopy height as a result of vertical differences in the translation velocity of the 
sweep motions in conjunction with the sheared mean wind speed. The sweep motions further 
penetrate the canopy and make a significant contribution to the scalar flux within the canopy. 
These simulated characteristics of the scalar turbulence are consistent with observations from 
within and above plant canopies.

The scalar sweep events near the canopy floor are a direct consequence of the penetration 
of such large-scale sweep motions, which push down the tailing part of the downstream-tilted 
structure of the scalar density. By contrast, the scalar ejection events near the canopy floor 
are driven by updrafts of coherent eddies generated near the canopy top under the conditions 
that sweep motions coming from aloft approach existing wide regions of low-speed ejective 
motions. The updrafts are intensified and tilted by the mean shear until they are almost in-
phase at levels from near the canopy floor to approximately twice the canopy height at their 
maximum strength, when scalar ejection events are induced near the canopy floor.

These coherent eddies contribute to the non-local transport of the scalars emitted/absorbed 
by the underlying soil surface to/from above the canopy. A signature of such a direct trans-
port through the canopy is detectable even above the canopy as a skewed deviation of the 
joint p.d.f. of the scalar and vertical velocity fluctuations from the third-order Gram–Char-
lier distribution. The sweeping downdrafts generally make a larger contribution to the flux 
than the ejecting updrafts in the present simulation. However, if the turbulence velocity field is 
unchanged, the updrafts generated near or above the canopy top play a more significant role in 
transporting those scalars that have their primary sources at the soil surface (e.g., respiratory 
CO2, CH4, volatile organic matter). The resulting change in the contributions of downdrafts 
and updrafts to the vertical scalar flux also impacts the direction and magnitude of the turbu-
lent transport of the scalar variance and flux, as indicated by an analysis using a third-order 
Gram–Charlier approximation of the joint p.d.f. This analysis reinforces the importance of 
taking the spatial distributions of the scalar source/sink within the canopy, as well as the struc-
tures and causal mechanism of coherent eddies, into consideration when modelling the non-
local transport of scalars.

The characteristics of the coherent eddies described here were deduced from a single case 
of a neutrally stratified flow in a relatively sparse plant canopy. The influences of the canopy 
morphology and the thermal stratification on their structures and resulting non-local trans-
ports are left as future issues. The lattice Boltzmann model presented herein can be applied to 
thermally non-neutral cases with marginal modifications to the code and would be feasible for 
further investigations on the non-local transport phenomena in wider conditions.
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