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Abstract
A central-moments-based lattice Boltzmann model for large-eddy simulation of neutrally-
stratified turbulent flows is described. Through comparative simulations of the airflowwithin
and above a homogeneous plant canopy, the performance of the model is evaluated with
respect to a conventional large-eddy-simulationmodel basedon the incompressibleNavier–S-
tokes equations. Simulated turbulence statistics, such as themean velocity, velocity variances,
velocity skewness, and power spectra, are shown to be almost identical between the two
models. The spatial structure of coherent eddies and their maintenance processes are also
confirmed to be properly represented by the lattice Boltzmann method through analysis of
the turbulence kinetic energy budget and spatial two-point correlation functions. Using the
simulated results, the energetics of the streamwise-elongated streaky structures commonly
observed over vegetation and urban canopies are examined. While the short-wavelength
components of the shear-generated streamwise kinetic energy are redirected rapidly by pres-
sure to the lateral and vertical velocity components, long-wavelength energy tends to remain
in the streamwise velocity component, which is dissipated in relatively slower processes.
Consequently, the streaky structures persist in the streamwise velocity component.
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1 Introduction

The exchange of momentum, heat, water vapour, carbon dioxide and other gasses, and parti-
cles between vegetation and the atmosphere, is one of the main processes in land–atmosphere
interactions.Turbulent eddies promote vegetation–atmosphere exchangeby transferring these
quantities through the plant canopy layer, in which individual sources and sinks are spatially
distributed below plant height, to and from the roughness sublayer above the canopy.

In neutrally-stratified conditions, turbulence both in the roughness sublayer and in the
canopy layer originally stems from strong mean shear, which is the consequence of the
reduction of wind speed in the canopy layer due to the drag force exerted by canopy ele-
ments. Turbulence kinetic energy (TKE) produced near the canopy top is then transported by
eddies into the canopy layer, where it is dissipated substantially in the wake of canopy ele-
ments (Raupach and Thom 1981). The spatial length scale of most energetic shear-generated
eddies is typically a few times larger than the canopy height (Raupach et al. 1996). These
phenomenological characteristics explain a number of well-documented features of canopy
turbulence that differ from those of ordinary boundary-layer turbulence. Such features include
large values of skewness in the streamwise and vertical velocity components, which are con-
sistent with the dominance of sweep motions near the canopy top, velocity flatness factors
that greatly exceed the Gaussian value, the marked contribution of vertical transport in the
budgets of second-ordermoments, and counter-gradient flux phenomena, indicating the inad-
equacy of the local gradient-diffusion model for representing the fluxes of momentum and
scalars in the canopy layer (Shaw 1977; Wilson and Shaw 1977; Raupach and Thom 1981;
Denmead and Bradley 1985; Watanabe 1993; Raupach et al. 1996; Katul et al. 2013). All
these features are consistent with the fact that tall, coherent eddies make essential contribu-
tions to the vertical fluxes (Denmead and Bradley 1985; Bergstöm and Högström 1989; Gao
et al. 1989), and constitute the majority of turbulent structures within and above the canopy
layer (Shaw et al. 1995; Finnigan and Shaw 2000).

In addition to field observations, flume or wind-tunnel experiments, and theoretical con-
siderations, numerical analysis using large-eddy simulation (LES) has received increasing
attention in the previous three decades. Since Shaw and Schumann (1992) and Kanda and
Hino (1994) first conducted LES investigations of turbulent flows within and above plant
canopies, many other authors have published reports on numerical analyses of canopy tur-
bulence in homogeneous plant canopies (e.g., Dwyer et al. 1997; Shen and Leclerc 1997; Su
et al. 1998; Patton et al. 1998; Fitzmaurice et al. 2004;Watanabe 2004, 2009; Yue et al. 2007;
Finnigan et al. 2009; Shaw et al. 2013), heterogeneous plant canopies (Dupont and Brunet
2009; Bohrer et al. 2009), and a homogeneous plant canopy under the influence of convective
motions in the atmospheric boundary layer (Patton et al. 2016). The LES approach has also
been applied to urban canopies in pioneering work by Kanda et al. (2004), Kanda (2006), and
Coceal et al. (2006), followed by Inagaki et al. (2012) and others, and LES is now established
as an indispensable tool for investigation of the nature of canopy turbulence.

The LESmodels used in previous studies have generally been based on the Navier–Stokes
equations and the incompressible continuity equation, which is indeed the most orthodox
method in computational fluid dynamics. As these equations directly express macroscopic
conservation laws, it is straightforward to compile simulation code that conservesmomentum
and mass. Kinetic energy can also be conserved if the non-linear advection terms are treated
properly. Therefore, such models are superior in terms of property conservation, which is
desirable for the reliable simulation of turbulence.
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Large-Eddy Simulation of Neutrally-Stratified Turbulent Flow 37

The lattice Boltzmann method (hereafter, the "Boltzmann approach") is a recently
advanced method of computational fluid dynamics (e.g., Chen and Doolen 1998; Aidum and
Clausen 2010), which, instead of considering macroscopic velocities and density, describes
fluidmotions by the spatiotemporal variations of the discrete velocity-distribution function of
microscopic fluid particles (Krüger et al. 2017). In an Eulerian framework, the temporal evo-
lution of the distribution function at a given node in a regular grid (lattice) system is governed
by the discretized Boltzmann equation, which incorporates particle streaming, collision, and
forcing processes as the key physics. Macroscopic variables (velocities and density) are eval-
uated as low-order moments of the distribution function. It can be shownmathematically that
the derived macroscopic variables satisfy the weakly compressible Navier–Stokes equations
within the limit of a low Mach number (Chen and Doolen 1998; Krüger et al. 2017). The
lattice Boltzmann method has several advantages over the incompressible Navier–Stokes
models. Solving the Poisson equation is not necessary for evaluation of the pressure, which
is calculated simply from an equation of state, i.e., pressure is related linearly to density
in an isothermal condition. Advection of macroscopic variables can be simulated with high
accuracy because the streaming process in the method is expressed exactly as a translation
of the distribution function during one timestep to a neighbouring grid point in the direc-
tion of the prescribed constant microscopic velocities. Collision and forcing processes are
expressed in a local manner, in which reference is only to a set of variables defined at a
single grid point. With these features, together with its simple algorithm and the ease of
implementing boundary conditions, the lattice Boltzmann method is feasible for application
to high-resolution simulations of atmospheric-boundary-layer flows using advanced parallel-
processing machines.

Application of the lattice Boltzmann method to the atmospheric-boundary-layer flow was
initiated only recently. Onodera et al. (2013) compiled a LES code by incorporating an
eddy-viscosity model (Kobayashi 2005) into a lattice Boltzmann algorithm, and conducted
a precise numerical simulation of airflow within and above an actual urban canopy. Through
using a massively parallelized supercomputer, the authors simulated the detailed wind field
at 1-m resolution over individual buildings in an area of approximately 10 km×10 km in
the city of Tokyo, Japan. Ahmad et al. (2017) and Inagaki et al. (2017) used the same code
to perform simulations of the spatial development of a neutral boundary layer over an actual
urban geometry near Tokyo with 2-m resolution in a domain of 19.2×4.8×1.0 km3. The
latter simulation allowed the authors to conduct simultaneous analysis of the aerodynamic
properties both of boundary-layer-scale eddies and of gusty motions in street canyons. These
studies demonstrated the potential of the lattice Boltzmann approach to be a powerful tool
for simulations of turbulent flows in the atmospheric boundary layer.

This paper describes the development of a new LES code based on the lattice Boltzmann
method for the simulation of canopy turbulence in neutrally-stratified conditions, presents
the validation of the code with respect to a conventional LES model based on the Navier–S-
tokes equations, and briefly discusses the maintenance process of the large-scale eddies that
dominate canopy turbulence.

2 Model Description

We adopt a Cartesian coordinate system in which x denotes the streamwise direction, y
represents the lateral direction, and z represents the vertical direction. Velocity components
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in these three directions are u, v, and w, respectively. Tensor notation such as (x1, x2, x3) �
(x , y, z) and (u1, u2, u3) � (u, v, w) is also used.

2.1 Navier–Stokes-BasedModel

A LES model described by Watanabe (2004, 2009) is used for the reference simulation, and
is based on the Navier–Stokes equations and the incompressible continuity equation. The
subgrid-scale (SGS) TKE is modelled using a separate prognostic equation. The SGS TKE
is used to model the eddy viscosity, which relates the strain-rate tensor of resolved velocities
to the SGS momentum fluxes. Horizontal derivatives are represented by a pseudo-spectral
method with the 2/3 dealiasing rule, while a fourth-order Padé scheme is adopted for vertical
differencing. Time advancement is performed by the third-order Runge–Kutta scheme. At
each step in the Runge–Kutta scheme, the Poisson equation for pressure is solved in Fourier
space to satisfy the constraint of incompressible continuity. The plant canopy is modelled
as homogeneously distributed sinks for momentum and SGS TKE. The instantaneous sink
strengths are described by the plant area density, an isotropic drag coefficient, and the resolved
velocity components. The numerical set-up for the reference simulation is the same as that
of the lattice Boltzmann method (described later), except that the exact value of the external
driving force is different and a longer streamwise domain (1500, 400, and 81 nodes in the
streamwise, lateral, and vertical directions, respectively) is adopted because this simulation
is conducted for the further purpose of inspecting the longest streamwise modes of the
velocity fluctuations. However, an appropriate normalization described in Sect. 3 enables a
proper comparison of turbulence statistics presented here. The influence of the domain size
is reported elsewhere (Watanabe 2004, 2009).

2.2 Lattice BoltzmannMethod

General and detailed descriptions of the lattice Boltzmann method can be found in published
reviews (e.g., Chen and Doolen 1998; Aidum and Clausen 2010), textbooks (e.g., Mohamad
2011; Krüger et al. 2017), and references therein. Only the essence adequate for reproducing
the present model is given here.

The basic structure of our lattice Boltzmann method is a three-dimensional 27-velocity
(D3Q27) lattice model, which is considered suitable for simulations of high Reynolds num-
ber flows in terms of numerical stability and accuracy (Suga et al. 2015). In this model,
the distribution functions fi jk(x, y, z, t) at position x and time t of discrete microscopic
velocities (ic, jc, kc) are considered. The indices i, j, k ∈ {−1, 0, 1} represent the direc-
tion of the discretized velocities (thus 27 velocities in total), and c � �x/�t is the lattice
velocity unit defined with lattice spacing �x and timestep �t . The main part of the lattice
Boltzmann algorithm consists of three steps: collision, forcing, and streaming. The collision
step represents the tendency of distribution functions towards equilibrium (with respect to
macroscopic velocities and density) due to collisions between particles. The forcing step cal-
culates temporal variations of distribution functions induced by external and internal forces.
The streaming step describes the translation of fluid particles in the direction of the discrete
microscopic velocities. The equations involved in each step are shown below. Following the
convention in the literature, the equations are written using the lattice-unit system in which
all variables are normalized, such that �x � �t � c � 1 should result and the mean fluid
density should be equal to unity. Therefore, the differences �x and �t are eliminated from
most of the following equations for brevity.
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Large-Eddy Simulation of Neutrally-Stratified Turbulent Flow 39

The collision process is modelled using a central-moment-based multi-relaxation-time
model (Geier et al. 2006, 2015; Premnath and Banerjee 2009, 2011), which is known to
have higher numerical accuracy and stability compared with more commonly used single-
relaxation-timemodels and othermulti-relaxation-timemodels based on rawmoments (Geier
et al. 2015). A cumulant-based multi-relaxation-time model (Geier et al. 2015; 2017) is
another possible candidate if a few more computations can be devoted for the collision step.
The central moments of the distribution function, κpqr , are defined as

κpqr (x, t) �
1∑

i�−1

1∑

j�−1

1∑

k�−1

(ic − u)p( jc − v)q(kc − w)r fi jk(x, t), (1)

where the indices p, q, r ∈ {0, 1, 2} are the directional orders of moment, and the sum of the
indices (p + q + r ) defines the formal order of moment (e.g., κ200, κ110, and other moments
with permutated indices are of the second order).

In the lattice Boltzmann algorithm, the distribution functions and the macroscopic vari-
ables (density, velocities, and pressure) are updated through the following procedure. At
every timestep, the distribution functions are transformed by Eq. 1 into the central-moment
space, where the collision and forcing steps proceed as

κ∗
pqr (x, t) � κpqr (x, t) + �κ

pqr (x, t) + Sκ
pqr (x, t). (2)

Here, the asterisk indicates the state after the collision and forcing steps (hereafter, the
“post-collision state”), and �κ

pqr and Sκ
pqr respectively denote the collision and forcing

terms described later. The post-collision central moments are then transformed back to the
distribution function space by

f∗(x, t) � C−1κ∗(x, t), (3)

whereC−1 represents the inverse transform of Eq. 1. In the streaming step, the post-collision
distribution functions are translated to adjacent grid points as

fi jk(x + ic�t, y + jc�t, z + kc�t, t + �t) � f ∗
i jk(x, y, z, t). (4)

After the streaming step,which is followedby application of appropriate boundary conditions,
themacroscopic variables at the next timestep are calculated from the low-order rawmoments
of the distribution function as

ρ �
1∑

i�−1

1∑

j�−1

1∑

k�−1

fi jk, (5)

ρu �
1∑

i�−1

1∑

j�−1

1∑

k�−1

(ic) f i jk + Fx/2, (6a)

ρv �
1∑

i�−1

1∑

j�−1

1∑

k�−1

( jc) fi jk + Fy/2, (6b)

ρw �
1∑

i�−1

1∑

j�−1

1∑

k�−1

(kc) fi jk + Fz/2, (6c)

p � ρ/3, (7)

where p is the macroscopic static pressure.
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As explained, the collision step describes the tendency of the velocity distribution towards
equilibrium. The continuous Maxwell–Boltzmann distribution f M defined as

f M(ρ,u, ξ) � ρ

(
3

2π

)3/2

exp

[
−3|ξ − u|2

2

]
, (8)

where ξ � (
ξx , ξy, ξz

)
denotes themicroscopic particle velocity, is adopted as the equilibrium

distribution to which the velocity distribution is relaxed. The continuous central moments of
the equilibrium distribution, κeq

pqr , are defined as

κ
eq
pqr �

+∞̊

−∞
(ξx − u)p

(
ξy − v

)q
(ξz − w)r f Mdξxdξydξz, (9)

and are shown analytically to have non-zero values only for the moments for which the
directional orders (p, q, r) are all even (Geier et al. 2006; Premnath and Banerjee 2011), i.e.,

κ
eq
000 � ρ,

κ
eq
200 � κ

eq
020 � κ

eq
002 � ρ/3,

κ
eq
220 � κ

eq
022 � κ

eq
202 � ρ/9,

κ
eq
222 � ρ/27. (10)

The forcing processes are also considered in the central-moment space. Defining F �(
Fx, Fy, Fz

)
as a force vector, the temporal rate of the distribution function attributable

to that force can be approximated as

� f /�t � (3/ρ)
[
(ξx − u)Fx +

(
ξy − v

)
Fy + (ξz − w)Fz

]
f M, (11)

based on the assumption that the particle-velocity distribution is generally near the equilib-
rium state represented by the Maxwell–Boltzmann distribution (He et al. 1998b; Premnath
andBanerjee 2009). The forcing term Sκ

pqr is given the continuous central moments of Eq. 11,
which can also be derived analytically and the non-zero values are written as

Sκ
100 � Fx , Sκ

010 � Fy, Sκ
001 � Fz,

Sκ
120 � Sκ

102 � Fx/3,

Sκ
210 � Sκ

012 � Fy/3,

Sκ
021 � Sκ

201 � Fz/3,

Sκ
122 � Fx/9, Sκ

212 � Fy/9, Sκ
221 � Fz/9. (12)

Using these expressions, the collision term is basically modelled as

�κ
pqr � −ωpqr

(
κpqr +

1

2
Sκ
pqr − κ

eq
pqr

)
, (13)

where ωpqr denotes the collisional relaxation coefficients for the individual moments. Equa-
tion 13 represents that the central moments after the half forcing is relaxed towards the
equilibriummoments κ

eq
pqr , which are associated with the macroscopic density and velocities

(Eqs. 8 and 9) that are also affected by the same amount of forcing, as implied by Eq. 6. By
adopting this representation, the overall numerical accuracy can be maintained at the second
order in both space and time (Guo et al. 2002;Krüger et al. 2017).However, as applyingEq. 13
independently to each of the moments may break the rotational invariance, some moments
are linearly combined and classified into 10 groups for which the same relaxation coefficients
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Large-Eddy Simulation of Neutrally-Stratified Turbulent Flow 41

(ω1, ω2, . . . , ω10) are assigned (Geier et al. 2015). The equations actually implemented for
the calculation of the post-collision moments are fully described in Appendix.

2.3 Subgrid-Scale Viscosity and Relaxation Coefficients

The macroscopic velocities predicted by the lattice Boltzmann method are defined at discrete
nodes of the lattice system and therefore correspond to the resolved-scale components. The
SGS stress is modelled by the eddy-viscosity model as

ταβ � −υSGS

(
∂uα

∂xβ

+
∂uβ

∂xα

)
+
2

3
kSGSδαβ, (14)

where α and β are indices for spatial coordinates, ταβ is the SGS stress, υSGS is the SGS eddy
viscosity, kSGS is the SGS kinetic energy, and δαβ is the Kronecker delta. A Smagorinsky-type
parametrization is used for the subgrid eddy viscosity,

υSGS � CSGS�
2
√
2Sαβ Sαβ, (15)

where CSGS is a parameter that depends on time and space, � is the grid spacing, and
Sαβ is the resolved strain-rate tensor; the repetition of indices implies summation over all
three components unless otherwise stated. The strain-rate tensor in Eq. 15 is evaluated using
local information (Eqs. 48 and 49 in Appendix) rather than finite differences that refer to the
macroscopic velocities at neighbouring grid points. In accordancewith the coherent-structure
Smagorinsky model proposed by Kobayashi (2005), the parameter CSGS is evaluated by

CSGS � C1

∣∣∣∣
Q

E

∣∣∣∣
3/2

, (16)

where C1 � √
3/20 is a model parameter optimized to reproduce the velocity spectra well

above the canopy in preliminary simulations,Q is the second invariant of the velocity gradient
tensor, and E is the magnitude of the velocity gradient tensor,

Q � 1

2

(
WαβWαβ − Sαβ Sαβ

)
, (17)

E � 1

2

(
WαβWαβ + Sαβ Sαβ

)
, (18)

with Wαβ being the resolved vorticity tensor. Only for the evaluation of the tensors Q and
E in these equations are the velocity gradients estimated using the second-order centred
difference. As the value of CSGS given by Eq. 16 automatically vanishes on a solid wall
(Kobayashi 2005), wall-damping functions are not introduced.

In the frameworkof the latticeBoltzmann approach, theSGSeddyviscosity is incorporated
into the relaxation coefficient ω1 for a group of the second-order moments (see Appendix)
as (Aidum and Clausen 2010)

υ + υSGS � 1

3

(
1

ω1
− 1

2

)
, (19)

where υ is the kinematic shear viscosity. Relaxation coefficients for other groups of the
moments are practically free parameters in the range of 0 < ω < 2, because they do not
appear in the Navier–Stokes equations recovered from the lattice Boltzmann equations (see
below) and thus have no primary influence on the simulated velocity fields. The values used
here are ω2 � ω6 � ω7 � ω8 � ω10 � ω1 and ω3 � ω4 � ω5 � ω9 � 1, which
are determined through preliminary simulations to achieve suitable numerical stability as
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simple as possible. It should be noted that, although the parameter υ is included in Eq. 19
for generality, the effect of shear viscosity is negligible in the present simulation of a well-
developed turbulent flow with a Reynolds number of Re ~105 (based on the canopy height
and the friction velocity defined later).

To account correctly for the second term on the right-hand side of Eq. 14, the SGS kinetic
energy kSGS must be evaluated. Following Inagaki et al. (2010) and Suga et al. (2015), the
value of kSGS is estimated by

kSGS � ρck

3∑

α�1

(uα − 〈uα〉)2, (20)

where ck (� 1) is a model constant and 〈uα〉 is a filtered velocity component given by

〈uα〉 � 1

12

(
uBα + uSα + uWα + 6uα + uEα + uNα + uTα

)
, (21)

in which uBα , uSα, . . . denote velocities at the six surrounding grid points. By adding the term
−(2/3)∂kSGS/∂xα to all the force components (Fα) in the above equations, the effects of the
normal components of the SGS stress are included properly.

With these parametrizations, the present latticeBoltzmannmodel predicts themacroscopic
density and velocities that satisfy the filtered continuity equation,

∂ρ

∂t
+

∂ρuα

∂xα

� 0, (22)

and the filtered Navier–Stokes equations,

∂ρuα

∂t
+

∂ρuαuβ

∂xβ

� − ∂p

∂xα

+
∂

∂xβ

[
ρ(υ + υSGS)

(
∂uα

∂xβ

+
∂uβ

∂xα

)
− 2

3
kSGSδαβ

]
+ Fα. (23)

2.4 Set-Up for the Canopy-Turbulence Simulation

The lattice Boltzmann simulation is performed for a turbulent flow within and above a
homogeneous plant canopy in a computational domain of 1024, 512, and 80 nodes in the
streamwise, lateral, and vertical directions, respectively. The lowest 10 nodes comprise the
canopy layer, in which the effect of plant elements is considered a spatially distributed
momentum sink. The grid spacing therefore corresponds to 0.1 h, with h being the canopy
height.

The airflow in the computational domain is driven by a streamwise external force Fext,
which is fixed constant at Fext/

(
ρ�x/(�t)2

) � 10−7. Horizontal boundaries are periodic,
while the top boundary is a rigid free-slipwall. The bottom boundary (i.e., the ground surface)
is a rigid wall with friction that is represented by including an instantaneous frictional force
in the horizontal force terms at the lowest fluid nodes. The rigid (and free-slip) boundaries are
represented by means of halfway specular reflection, in which particle-velocity components
that move inwards from the wall are given by

fi jk(x, y, zb, t + �t) � f ∗
i jk′ (x − ic, y − jc, zb, t), (24)

where zb is the height of the highest or lowest fluid node, and k denotes an inwards direction
opposite to the direction towards the wall (k

′
). This implies that the actual wall boundaries

are located one-half grid spacing beyond the highest or lowest fluid node (Lallemand and
Luo 2003); all variables ( f , u, v, w,ρ, p) are collocated at each grid node.
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The instantaneous drag force exerted by the plant elements is conventionally modelled
using a product of the leaf area density a, isotropic drag coefficient cd, and instantaneous
macroscopic velocity u as

Fd � −ρcda|u|u. (25)

These canopy parameters are given as ah � 2 (i.e., the leaf area index LAI� 2) and cd � 0.2.
Similarly, the frictional force of the underlying ground is given by the bulk relation,

Fg � −ρCM|ub|ub, (26)

where CM is the bulk transfer coefficient of momentum and ub is the instantaneous macro-
scopic velocity at the lowest nodes. The coefficient CM is calculated assuming a logarithmic
wind profile with a prescribed aerodynamic roughness length z0g, which is prescribed as
z0g/h � 10−3 throughout the bottom boundary. The drag force depends on the square of the
macroscopic velocity (Eq. 25). However, as the definition of macroscopic velocity includes
the drag force (Eq. 6), the macroscopic velocity is evaluated as a solution of the resulting
quadratic equation (Guo and Zhao 2002),

u � u0
1
2 +

√
1
4 + 1

2cda|u0|
, (27)

where u0 denotes the macroscopic velocity calculated without the drag force from Eq. 6. At
the lowest nodes, cda in the above equation is replaced by (cda + CM) to account for the
frictional force of the ground.

Each simulation is initialized with a uniform streamwise velocity component with a small
amount of random perturbations in the vertical velocity component and the distribution
functions that represent equilibrium to the given velocities. After the turbulence statistics
reach a steady state, three-dimensional data of the macroscopic variables and the distribution
functions are collected at a constant time interval of 0.66 h/u∗. In total, 450 samples are used
for the analysis described in the next section.

2.5 Implementation of the Lattice BoltzmannMethod

In the actual implementation, the distribution functions pre-conditioned by subtracting con-
stant values are used as suggested by Geier et al. (2015, 2017) to minimize round-off errors.
Moreover, the corresponding transformations to/from the central-moment space are per-
formed using a factorized fast procedure described by Geier et al. (2017). The model, coded
using the Compute Unified Device Architecture (CUDA) C language, runs on a desktop
PC (CPU: Intel Core i7-4790K) equipped with a graphics processing unit (NVIDIA Quadro
GV100). Double-precision (64 bit) arithmetic is used. As suggested by Rinaldi et al. (2012)
and Delbosc et al. (2014), a streaming–collision combined kernel is adopted to reduce the
number of accesses to the global memory and thereby to improve overall computational
efficiency.

3 Results and Discussions

The results are presented non-dimensionalized using the friction velocity u∗ and canopy
height h. In a horizontally homogeneous steady airflow driven by a constant volumetric
force, the mean shear stress above the canopy should decrease linearly with height to zero at
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the free-slip top boundary. The shear stress at the canopy top τh can be predicted theoretically
as

τh � Fext(ztop − h
)
, (28)

where ztop is the top-boundary height (� 8h). The friction velocity in the present simulations
is therefore defined by u∗ � √

τh/ρ. In what follows, an overbar ( ) denotes a mean value
obtained by averaging over horizontal planes at a given height in all samples, while a prime
(′) indicates deviations from the mean.

3.1 One-Dimensional Profile

Vertical profiles of the mean wind speed, turbulent momentum flux, resolved velocity vari-
ances, and resolved velocity skewness are shown in Fig. 1. The mean wind speed decreases
exponentially with depth into the canopy and increases near-logarithmically with height
above the canopy. An inflection point of the profile is thus located near the canopy top.
As expected, the magnitude of the vertical momentum flux decreases linearly with height
above the canopy, while it decreases quickly within the canopy because of the existence
of a momentum sink. Velocity variances have maxima at z/h � 1.2–1.8 and their relative
magnitudes are u′u′ > v′v′ > w′w′. Velocity skewness in the canopy layer is positive for
the streamwise velocity component and negative for the vertical velocity component, and
the signs become reversed at a distance well above the canopy. The skewness of the lateral
velocity component is essentially zero at all heights. All these characteristics share common
well-known features of turbulent flows within and above plant canopies (Kaimal and Finni-
gan 1994; Raupach et al. 1996). While the profiles for these quantities are similar to those
from the Navier–Stokes model, a remarkable difference can be seen in Fig. 1c, in which
the Navier–Stokes u′u′ profile exhibits an oscillation near the canopy top. Because of the
stepwise change given in the leaf area density, the velocity varies sharply across the canopy
top. In such a circumstance, vertical advection near the canopy top is approximated less
accurately by the finite-difference method adopted in this Navier–Stokes model (Watanabe
2004, 2009) and dispersive errors grow around this point; a similar result was found by Ouw-
ersloot et al. (2017). To reduce such errors, a higher-order less dispersive scheme must be
used. Conversely, streaming of the distribution functions in the lattice Boltzmann method
is always performed by an exact upstream scheme with a Courant number of unity (Eq. 4),
which enables the model to simulate three-dimensional advection with almost no numerical
error. In general, this is one of the remarkable advantages of the lattice Boltzmann method
in simulating airflow within and above canopies with complex geometries.

3.2 Turbulence Kinetic Energy Budget

Figure 2 shows vertical profiles of the individual terms in the budget equation of the TKE,

∂ρe

∂t
� 0 � −∂ρw

′e

∂z
− ∂ρu ′

ατ ′
α3

∂z
− ∂ p′

w
′

∂z
− ρu′w′ ∂u

∂z
− cdaρ|u|uαu

′
α − ρε, (29)

where ρe denotes the resolved TKE with e � u
′
αu

′
α/2, and ρε is the loss of TKE due to the

production of SGS motion. The terms on the right-hand side of Eq. 29 represent (from left to
right) turbulent transport, SGS transport, pressure transport, shear production, loss of TKE
due to the production of small-scale turbulence in the wakes of canopy elements, and SGS
production, respectively. The vertical fluxes in this equation are calculated at the same grid
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Fig. 1 Vertical profiles of amean wind speed, bmomentum flux, c resolved velocity variances, and d resolved
velocity skewness calculated from the lattice Boltzmannmethod (LBM) (mark and line) and theNavier–Stokes
(NS) model (line). Broken lines in the (b) represent the SGS components of the momentum flux, and grey
shading indicates the canopy layer in which the leaf area is distributed homogeneously

points as the velocities, while the vertical gradients are evaluated at the grid boundaries. The
SGS production term for the Navier–Stokes model is calculated directly from

ε � τ ′
αβ∂u

′
α/∂xβ, (30)

whereas the same term for the lattice Boltzmann method is evaluated as the residual of
Eq. 29. In Fig. 2, the Navier–Stokes results are smoothed by a vertical 1–2–1 filter to reduce
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Fig. 2 Vertical profiles of the terms in the TKE budget equation simulated by the lattice Boltzmann (lines) and
the Navier–Stokes (marks) models. Ps: shear production, Tt : turbulent transport, Tp: pressure transport, Dc:
loss by canopy drag, TSGS: SGS transport, DSGS: SGS production. A non-zero Dc value for the Navier–Stokes
model above the canopy is attributable to the 1–2–1 filtering

numerical oscillations and to facilitate comparison with the lattice Boltzmann results. The
figure implies that TKE is injected by the mean shear and consumed by the SGS productions
above the canopy and thewake productionwithin the canopy. Vertical transfer by the resolved
turbulence, SGS turbulence, and pressure work in tandem to redistribute TKE to deep inside
the canopy layer. Although these features are well known in relation to canopy turbulence
(Wilson and Shaw 1977; Raupach et al. 1986; Meyers and Baldocchi 1991; Dwyer et al.
1997), this figure clearly indicates that the method is as capable as the Navier–Stokes model
of reproducing the key processes of production, dissipation, and transport of TKE.

Certain differences between the two models can be seen in terms of the pressure transport
and SGS production near the canopy top, with the difference in pressure transport presumably
attributable to the differences of the model equations. The Navier–Stokes model is based on
the incompressible continuity equation, whereas the lattice Boltzmann equation possesses a
weakly compressible nature (Eqs. 22 and 23), which permits the propagation of pseudo sound
waves. The reason why the difference in SGS production cannot be determined explicitly is
that this term in the lattice Boltzmann equation is a residual of the TKE budget. One possible
factor might be the aforementioned dispersion error associatedwith the Navier–Stokesmodel
used here. If so, the numerical dispersion locally increases the spatial derivatives of velocities
near the canopy top, thereby producing a local peak of SGS production at that point.

3.3 Spectra

Streamwise and lateral one-dimensional power spectra of the velocity components u, v, and
w at selected levels are shown in Fig. 3. Spectra at levels above the canopy (z/h � 3.05,
2.05) generally follow the −5/3 power law in the inertial subrange, whereas spectra within
the canopy (z/h � 0.55) have steeper gradients due to the so-called short-circuiting process
of the inertial energy cascade caused by the drag of canopy elements (Raupach and Shaw
1982; Finnigan 2000). As obstacles such as stems and branches of a particular length scale
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are not represented in the model, a secondary peak in the inertial subrange that is sometimes
observed inside canopy layers (Seginer et al. 1976; Raupach et al. 1986; Poggi et al 2004;
Cava and Katul 2008; Dupont et al. 2012) is not seen in Fig. 3. High-performance simulations
that resolve small-scale eddies shed by canopy elements may provide direct representation
of the short-circuiting processes. Overall, the spectra from both models are almost identical
for the range of the longest wavelengths down to a wavelength of approximately (2/3)h.

3.4 Two-Point Correlation Function

The mean spatial structure of coherent motions in canopy turbulence can be deduced by
examining spatial two-point correlation functions (Shaw et al. 1995; Su et al. 2000; Finnigan
and Shaw 2000), such as that between flow variables obtained at arbitrary heights and a
reference height,

Rab
(
rx , ry, z, zr

) � a′(x + rx , y + ry, z
)
b′(x, y, zr )

[
a′2(z) b′2(zr )

]1/2 , (31)

where a and b are one of the flow variables (e.g., velocity, pressure), rx and ry are streamwise
and lateral separations, respectively, and zr is the reference height, which is fixed at a height
just above the canopy as zr/h � 1.05. In the periodic domain used in the present simulations,
the covariance and variances in the above equation can be calculated via the Fourier transform,

a′(x + rx , y + ry, z
)
b′(x, y, zr ) � F−1[â

(
kx , ky, z

)̂
b∗(kx , ky, zr

)]
/Nx Ny, (32)

where â and b̂ are the Fourier transform of a
′
and b′, respectively, kx and ky are horizontal

wavenumbers, F−1[ ] represents the inverse Fourier transform (the asterisk * denotes the
complex conjugate), and Nx Ny is the total number of horizontal grid points.

As the power spectra are almost identical in the range of low wavenumbers where the
spectra have significant power (Fig. 3), the two-point autocorrelation functions of the velocity
components can be foreseen as similar between the two models, as confirmed in Fig. 4. In
this figure, the lattice Boltzmann results are shown by line contours and the Navier–Stokes
results are represented by coloured shading. As expected, the two-point correlation functions
from both almost coincide. The autocorrelation of streamwise velocity component exhibits
a streamwise-elongated (Fig. 4c) and vertically tilted large-scale structure, in which the 0.1
contour reaches higher than 6 h and extends downstream beyond the figure (Fig. 4a). Such
spatial coherence in the vertical velocity component is much more compact in a horizontal
slice (Fig. 4d) and it is nearly in phase at all levels from the ground to the height 2–3 h
(Fig. 4b). As these figures are similar to what has been reported following earlier studies
using wind-tunnel experiments (Shaw et al. 1995) and an LES analysis (Su et al. 2000) of
flows within and above different plant canopies, the key features of the coherent structures
depicted here are considered not strongly affected by the details of canopy morphology.
Similarly to Su et al. (2000), a region of negative correlations in the function Ruu is seen
near the ground in Fig. 4a. The occurrence of such a region is probably attributable to an
adverse pressure gradient induced by large-scale sweep motions impinging on the canopy
constrained by solid ground. For more discussions, the readers should refer to Su et al. (2000)
and Shaw et al. (2013).

As suggested by Finnigan and Shaw (2000) and supported by the positive streamwise
skewness shown in Fig. 1d, sweep motions generally have greater kinetic energy than ejec-
tion motions near the canopy top. Hence, the distribution of two-point correlations, with the
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Fig. 3 One-dimensional power spectra at four different heights of z/h � 3.05 (a, b), 2.05 (c, d), 1.05 (e, f),
and 0.55 (g, h). a, c, e, and g are streamwise spectra, while b, d, f , and h are lateral spectra. Lines represent
the lattice Boltzmann results and marks denote the results of the Navier–Stokes model; Lx and Ly are the
streamwise and lateral dimensions of the computational domain; λx and λy are the streamwise and lateral
wavelengths
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Fig. 3 continued

reference point near the canopy top, tends to reflect the structure of sweep motions selec-
tively. Conducting a conditional sampling analysis on the LES results, Watanabe (2004,
2009) reported that sharp streamwise gradients of the streamwise velocity component near
the canopy top, associated with a scalar micro-front between an upstream sweep and a
downstream ejection, are observed most often with the passage of a streamwise-elongated
and vertically-tilted structure similar to that shown in Fig. 4. Similar spatial structures
were also detected in the LES results of Fitzmaurice et al. (2004), who used an occur-
rence of a positive pressure pulse near the canopy top as a trigger of conditional sampling.
As the combination of an upstream sweep and a downstream ejection causes streamwise
convergence (i.e., ∂u/∂x < 0) near the canopy top, a positive pressure zone that devel-
ops there gives rise to divergent flow in both lateral and vertical directions. An intense
positive pressure perturbation can thus be used as an indicator of the presence of the sweep-
–ejection system that also causes the scalar micro-front. Therefore, although the detection
method was different between Fitzmaurice et al. (2004) and Watanabe (2004, 2009), the
sweep part of the spatial patterns shown by these authors essentially represent the common
structure that induces the most energetic perturbations in the streamwise velocity compo-
nent, of which the spatial structure is depicted by the two-point autocorrelation Ruu in
Fig. 4.

As shown in Fig. 4c, d, the horizontal distribution of the two-point correlation functions
exhibits lateral symmetry attributable to the statistical homogeneity in the lateral direction.
However, this picture is not quite representative because individual eddies generally have
asymmetric shapes with different orientations. To obtain averaged images of such asym-
metrical spatial structure of the dominant eddies, the two-point correlation functions are
recalculated using only a part of the Fourier components in the first (kx >0,ky > 0) and
third (kx <0, ky <0) quadrants in the horizontal wavenumber plane, thereby summing only
the components that have negative inclination angles of wave crest line with respect to the
streamwise direction.

Horizontal distributions of the recalculated functions Ruu , Rvu , Rwu are shown in Fig. 5,
with only the lattice Boltzmann results shown for brevity. Figure 5a reveals that the symmetric
pattern seen in the streamwise velocity component (Fig. 4c) is comprised of the superpo-
sition of laterally meandering structures that are much longer streamwise than shown in
Fig. 4c. It should be noted that the unused Fourier components in the second and fourth
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Fig. 4 Spatial distribution of two-point autocorrelation functions of the streamwise (a, c) and vertical (b,
d) velocity components in a vertical–streamwise cross-section (a, b) and a horizontal cross-section (c, d) at
the height z/h � 1.05. Line contours with an interval of 0.1 denote the lattice Boltzmann results and coloured
shading represents the Navier–Stokes results
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Fig. 4 continued

quadrants would produce mirrored patterns (with respect to the horizontal axis at ry � 0) of
Fig. 5 and the summation of all components would reduce to Fig. 4. The cross-correlation
functions Rvu and Rwu (Fig. 5b, c) indicate that high values of the streamwise veloc-
ity component are accompanied not only by the negative values of the vertical velocity
component corresponding to sweep motions but also by excursions of the lateral veloc-
ity component. The lateral motions are directed systematically towards the region of low
values of the streamwise velocity component from the high-speed counterparts. Similar
results were reported by Perret and Ruiz (2013), who conducted conditional sampling of
sweep and ejectionmotions fromwind-tunnel particle-image-velocimetry data using a biased
threshold towards positive values of the lateral velocity component. Moreover, compared
with the streamwise-elongated feature of the streamwise velocity component, the lateral
and vertical velocity components generally have shorter oblique structures that concentrate
near the meandering core of the streamwise velocity component. Thus, the most energetic
sweep event, in the meandering field of streamwise velocity component, corresponds to the
oblique front where a fast-moving high-speed perturbation overtakes and pushes aside low-
speed perturbations that move more slowly; this finding is consistent with Watanabe (2009).

3.5 Spectral Energy Budget of the Streamwise Structure

Although the mechanism leading to the occurrence of the streaky structures mentioned above
remains a matter of debate (Raupach et al. 1996; Finnigan et al. 2009; Watanabe 2009; Shaw
et al. 2013) and beyond the scope here, some insights into the process that maintains such
structures can be obtained by examining the TKE budget in more detail. Figure 6a shows the
pre-multiplied spectral distribution of the terms in the budget equation for the variance u ′2/2
calculated just above the canopy (z � 1.1h). The pre-multiplied versions of the streamwise
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Fig. 5 Horizontal distribution at z/h � 1.05 of the two-point correlation functions a Ruu , b Rvu , and c Rwu
recalculated using a limited number of Fourier components. Only the lattice Boltzmann results are shown and
the contour interval is 0.1
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Fig. 6 Streamwise one-dimensional spectral distribution. a Pre-multiplied distribution of individual terms in
the budget equation of u′u′/2. Ps: shear production, Tt : turbulent transport, Rp: pressure–strain-rate correla-
tion, TSGS: SGS transport, DSGS: SGS production. b Pre-multiplied power spectra of the u and w velocity
components. c Vertical coherence length for the u and w velocity components. Data shown in (a) and (b) are
evaluated just above the canopy (z/h� 1.1). The horizontal axis is the streamwise wavelength normalized by
the canopy height. Only the lattice Boltzmann results are shown

one-dimensional power spectra of the u and w components are also shown in Fig. 6b for
comparison.

As has been widely accepted, the kinetic energy is first injected into the streamwise
energy through shear production, i.e., streamwise fluctuation is induced by the vertically
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advected (displaced) mean velocity. The peak of shear production −Re
[
û∗ŵ

]
du/dz (Re

denotes the real part) is located in between the peaks of the pre-multiplied power spectra
of the u and w components. Thus, the fundamental source of TKE includes both long-
and short-wavelength components. In fact, the long components (wavelengths>10h) are
responsible for 46% of the total shear stress u ′

w
′ at the canopy top. However, the kinetic

energy induced by shortwave components is redistributed largely to the lateral and vertical
components of TKE through the action of pressure, as indicated by the pressure–strain-rate
correlation term Im

[
kx p̂û∗] (Im denotes the imaginary part) in Fig. 6a. This is attributable

to the sharp streamwise gradients in the shortwave fluctuations of the streamwise velocity
component, which induce intense pressure perturbations to satisfy the constraint of flow
continuity. One may recall that the pressure-strain-rate correlation is the only substantial
source in the budget of lateral and vertical components of TKE, and the sum of the terms in
all three components almost vanishes because of the flow continuity. As a result, the power
spectra of the v and w components have significant values only in the short-wavelength
or large-wavenumber range (Figs. 3 and 6b), while the longwave energy tends to remain
in the streamwise velocity component. The shear production to a longwave component is
balanced by the turbulent transport, which is composed of the vertical transport towards the
canopy layer and the energy cascade to shortwave components, and, to a lesser extent, direct
consumption for SGS production. Because these non-linear processes involve the higher-
order interactions between the turbulent velocity fluctuations, these processes are slower
than the pressure-redistribution process, which is dominated by the linear rapid pressure
that responds instantaneously to the shear production (Pope 2000). Consequently, longwave
structures in the streamwise velocity component persist for longer.

The spectral distribution of the vertical coherence length (Fig. 6c) indicates that
streamwise-elongated structures are generally tall. The coherence length, which is a spectral
analogue of the integral length scale, is calculated as

Lαα
z (kx , zr ) �

∫ ztop

h
Cαα(kx , z, zr )dz, (33)

where Cαα is the coherence function between individual Fourier modes obtained at arbitrary
heights and the reference height, i.e.,

Cαα(kx , z, zr ) �
∼
uα(kx , y, z)

∼
u

∗
α(kx , y, zr )

[∣∣∣
∼
uα(kx , y, z)

∣∣∣
2 ∣∣∣

∼
uα

(
kx , y, zr

)∣∣∣
2
]1/2 . (34)

Here,
∼
uα is the streamwise one-dimensional Fourier transform of uα , and repeated indices

in Eqs. 33 and 34 do not imply summation. The reference height is set to zr/h � 1.05, and
the integral in Eq. 33 is calculated only in the region above the canopy. It should be noted
that the above definition is based on the “coherence height” used by Jiménez et al. (2004) but
differs slightly from the original definition. Figure 6c clearly indicates that the vertical length
scales for both the streamwise and vertical velocity components increase with the streamwise
wavelength λx in the shorter range (λx ≤ 10h), where the structure of the vertical velocity
component is generally taller than that of the streamwise velocity component. For longer
wavelengths (λx > 10h), however, the length scale of the vertical velocity component levels
off, whereas the length scale of the streamwise velocity component continues to grow to the
dimension of 2–3 h at the longest wavelengths. Thus, the longest modes of the streamwise
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velocity component are coherent across the roughness sublayer, which is considered to extend
to a height of roughly 3h.

Taken altogether, the larger contribution of longwave components to the streamwise
velocity component (Fig. 6b) results in a more streamwise-elongated, taller coherent struc-
ture (Fig. 4a) in comparison with the compact structure of the vertical velocity component
(Fig. 4b).

4 Conclusions

We have described a central-moments-based lattice Boltzmann method for the simulation
of neutrally-stratified turbulent flows with the LES approach. By conducting comparative
simulations of the airflow within and above a homogeneous plant canopy, the performance
of the model was evaluated against a conventional LES model based on the Navier–Stokes
equations. The simulated turbulence statistics such as mean velocity, velocity variances,
velocity skewness, and power spectra are almost identical between the two models. The
spatial structure of the coherent eddies and their maintenance processes were confirmed
properly represented by the lattice Boltzmann approach through analysis of the TKE budget
and the spatial distribution of two-point correlation functions.

As already shown by previous studies, the most prominent spatial structures in the
streamwise velocity component present a streaky form in the roughness sublayer over both
vegetation and urban canopies. An examination of the spectral TKE budget shows that the
difference in the pressure-redistribution process between short- and long-wavelength com-
ponents of the shear-generated streamwise energy plays a role in the maintenance of the
streaky structures.Although the turbulent pressure rapidly redirects short-wavelength compo-
nents of streamwise energy to the lateral and vertical velocity components, long-wavelength
components of energy tend to remain in the streamwise velocity component because the
pressure-redistribution process works only marginally because of the small streamwise gra-
dients in the long-wavelength components.

Based on our experience, the lattice Boltzmann algorithm is quite simple and its coding is
straightforward. Its particulate nature and local dynamics are suitable for high-performance
computations of the atmospheric-boundary-layer flows. Although we only dealt with a neu-
trally stratified flow, the method can be applied to non-neutral conditions by including the
buoyancy in the forcing terms,with the aid of a coupled solver for (potential) temperature. The
temperature solver could also use a lattice Boltzmann approach for predicting the distribution
function of the internal energy (e.g., He et al. 1998a; Wang et al. 2018) or a conventional
finite-difference approach for the macroscopic thermodynamic equation.
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Appendix: Equations for the Collision and Forcing

The post-collision central moments are generally calculated by Eq. 2 with the collision
process parametrized as a relaxation towards equilibrium (Eq. 13). However, to maintain
the rotational invariance, some moments need to be rearranged before relaxation, and some
relaxation coefficients must be assigned the same value (Geier et al. 2015). The actually
implemented equations are described here.

For the conservative moments (i.e., the zeroth- and first-order moments, related to the
mass and momentum conservations, respectively), the relaxation coefficients must be zero,
and the post-collision moments are given as

κ∗
000 � κ000, (35)

κ∗
100 � κ100 + Fx � −κ100, (36a)

κ∗
010 � κ010 + Fy � −κ010, (36b)

κ∗
001 � κ001 + Fz � −κ001. (36c)

The second-order moments are rearranged to correctly recover the traceless and trace com-
ponents of the momentum flux tensor, to which the coefficients ω1 and ω2 are applied
respectively,

κ∗
110 � (1 − ω1)κ110, (37a)

κ∗
011 � (1 − ω1)κ011, (37b)

κ∗
101 � (1 − ω1)κ101, (37c)

κ∗
200 − κ∗

020 � (1 − ω1)(κ200 − κ020) − 3ρ
(
1 − ω1

2

)(
u2

∂u

∂x
− v2

∂v

∂y

)
, (38a)

κ∗
200 − κ∗

002 � (1 − ω1)(κ200 − κ002) − 3ρ
(
1 − ω1

2

)(
u2

∂u

∂x
− w2 ∂w

∂z

)
, (38b)

(39)

κ∗
200 + κ∗

020 + κ∗
002 � (1 − ω2) (κ200 + κ020 + κ002) + ω2ρ

− 3ρ
(
1 − ω2

2

)(
u2

∂u

∂x
+ v2

∂v

∂y
+ w2 ∂w

∂z

)
.

Final terms in Eqs. 38 and 39 are partial corrections for the lack of Galilean invariance of
the original lattice Boltzmann equation (Geier et al. 2015), and the velocity gradients used
in these terms are calculated by Eq. 48 shown below. Similarly, the post-collision values of
the higher-order moments are calculated by the rearranged equations as

κ∗
120 + κ∗

102 � (1 − ω3)(κ120 + κ102) +
(
1 − ω3

2

)2Fx
3

, (40a)

κ∗
210 + κ∗

012 � (1 − ω3)(κ210 + κ012) +
(
1 − ω3

2

)2Fy

3
, (40b)

κ∗
201 + κ∗

021 � (1 − ω3)(κ201 + κ021) +
(
1 − ω3

2

)2Fz
3

, (40c)
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κ∗
120 − κ∗

102 � (1 − ω4)(κ120 − κ102), (41a)

κ∗
210 − κ∗

012 � (1 − ω4)(κ210 − κ012), (41b)

κ∗
201 − κ∗

021 � (1 − ω4)(κ201 − κ021), (41c)

κ∗
111 � (1 − ω5)κ111, (42)

κ∗
220 − 2κ∗

202 + κ∗
022 � (1 − ω6)(κ220 − 2κ202 + κ022), (43a)

κ∗
220 + κ∗

202 − 2κ∗
022 � (1 − ω6)(κ220 + κ202 − 2κ022), (43b)

κ∗
220 + κ∗

202 + κ∗
022 � (1 − ω7)(κ220 + κ202 + κ022) + ω7

ρ

3
, (44)

κ∗
211 � (1 − ω8)κ211, (45a)

κ∗
121 � (1 − ω8)κ121, (45b)

κ∗
112 � (1 − ω8)κ112, (45c)

κ∗
221 � (1 − ω9)κ221 +

(
1 − ω9

2

) Fz
9

, (46a)

κ∗
212 � (1 − ω9)κ212 +

(
1 − ω9

2

) Fy

9
, (46b)

κ∗
122 � (1 − ω9)κ122 +

(
1 − ω9

2

) Fx
9

, (46c)

κ∗
222 � (1 − ω10)κ222 + ω10

ρ

27
, (47)

where ω3,4,5 are the relaxation coefficients for the third-order moments, ω6,7,8 are those for
the fourth-ordermoments, andω9 andω10 are those for the fifth- and the sixth-ordermoments,
respectively. The forcing terms in the higher-order moments are included in Eqs. 40 and 46,
as suggested by Fei and Luo (2017) and Fei et al. (2018). The velocity gradients in Eqs. 38
and 39 are evaluated from the second-order central moments as (Geier et al. 2017)

∂u

∂x
� −ω1

2ρ
(2κ200 − κ020 − κ002) − ω2

2ρ
(κ200 + κ020 + κ002 − ρ), (48a)

∂v

∂y
� ∂u

∂x
+
3ω1

2ρ
(κ200 − κ020), (48b)

∂w

∂z
� ∂u

∂x
+
3ω1

2ρ
(κ200 − κ002). (48c)

Other components of the strain rates are similarly evaluated as

∂v

∂x
+

∂u

∂y
� −3ω1

ρ
κ110, (49a)

∂w

∂x
+

∂u

∂z
� −3ω1

ρ
κ101, (49b)

∂w

∂y
+

∂v

∂z
� −3ω1

ρ
κ011. (49c)

The final three relationships are used in the evaluation of the subgrid eddy viscosity (Eq. 15).
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