
We revealed that this symbiosis is a discrete four level food chain, 
wherein bacteria function as the apex carnivores, animals and fungi are 
meso-consumers, and the sole herbivores are fungi.

Applications to invisible food webs 

Advances in compound-specific stable isotope analysis of amino acids�
Yoshito Chikaraishi and Yuko Takizawa 
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We revealed that Insectivores are really carnivores. Like animals, they 
assimilate and digest diets (i.e., insect-derived amino acids) that is frequently 
accounts to >50% of proteins in the plant biomass.

Perspectives on the isotope analysis 

Isotopic discrimination in N mirrors “How much metabolic energy is produced” in 
organisms, implying that δ-values tell us “energetic” hierarchy among organisms 
in food web, but “energetic” does not always equal to “functional”.

(1-1) Ant’s fungus garden 

(1-2) Insectivores 

Trophic adequacy & habitability  
(2-1) Trophic shift in Hawaiian petrel  

We revealed millennial-scale trophic shift of AAs in bone collagen in a wide-
ranging oceanic seabird, the Hawaiian petrel (Pterodroma sandwichensis), a 
phenomenon potentially related to the conflict within industrial fishing.

TP = 4.2 ± 0.1
(2000-2500y BP)

TP = 4.1 ± 0.1
(300-400y BP)

TP = 3.8 ± 0.2
(Modern)

Ostrom et al., 2017, Proceedings of the Royal Society B 

(2-2) Isoscape in a terraced field 
We can illustrate spatial�(and temporal) gradient in δ15NPhe of environments, 
which is useful for identifying the habitat preference among organisms.

(3-1) Energetic vs. functional position in food webs 

(3-2) Metabolic flux via CSIA N & C 
Deamination preferentially eliminates 14N as ammonia, leaving behind the 
enriched 15N in the residual pool of amino acids.
Decarboxylation preferentially eliminates 12C as CO2, leaving behind the enriched 
13C on intermediates (e.g., pyruvic acid and α-ketoglutaric acid), which can be 
propagated into amino acids via re-biosynthesis (or metabolic routing).

【Δδ15N-Δδ13C of Sea slug feeds on Sponge】 

Takizawa et al., ECE, 2017 

Goto et al., in prep 
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TP = 2.9 ± 0.2 Ants 

Plant leaves 
TP = 1.0 ± 0.1 

Fungi�
TP = 2.0 ± 0.1 

Bacteria�
TP = 4.0 ± 0.2 
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(3) Their consumers�(2) Without insect �

2.28 ± 0.04�

Tropical pitcher plant 
(Nepenthes alata)�
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Caterpillars 
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Ladybugs @ 2F�

F. japonica�
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L. doenitzi 
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T. emma 
(5.9 ± 1.4 ‰) 

V. Micado 
(6.1 ± 2.4 ‰) 
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Omnivores 

Multiple carnivores 
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�Rayleigh model for the enzymatic deamination of Glu	 �
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