High resolution food web viewed via ¹⁵N/¹⁴N of amino acids

Yoshito Chikaraishi

Acknowledgements: Y. Takizawa¹, N. Ohkouchi², Y. Takano², M. Tsuchiya², S. A. Steffan³, P. S. Dharampal³ (¹. Hokkaido University, ². JAMSTEC, ³. Wisconsin University, USA)

Grazing food web

We often arrange organisms in food-chains according to trophic position (TP), which forms a "food web pyramid" from a broad base of primary producers (TP=1) to a relatively less of herbivores (TP=2) and more-less of carnivores (TP=3), and finally to a few of top predators (TP=4-5). This arrangement is particularly useful, if you want to see the trophic hierarchy and associated energy flow (or energy transfer) in the ecosystem.

δ¹⁵N of amino acids vs. TP

A unique offset in ¹⁵N/¹⁴N (δ¹⁵N, ‰ vs. Ari) between glutamic acid (Glu) and phenylalanine (Phe) in a single organism enables TP estimates of organisms in food webs. We proposed the following equation to calculate TP of organism (Chikaraishi et al. 2009).

Possible mechanism

Different metabolic reactions in consumers cause large $\Delta \delta^{15}N$ for Glu but little for Phe.

Illustration of trophic hierarchy

We employed this method to see the trophic structure with high-resolution among approximately >300 free-roaming organisms in coastal and sandy ocean and in terrestrial ecosystems.

[Sandy beach]

[Orange & vegetable farm]

Chikaraishi et al., 2014, Ecol. Evol. 4, 2423-2449

Stony shore

Unpublished data (very sorry)

Chikaraishi et al., 2004, Ecol. Evol. 4, 2423-2449

Advantages of this method

- 1. TP estimates can be achieved based on δ¹⁵N offset in a pair of amino acids (e.g., Glu & Phe) from a single organism of interest. Unlike the traditional bulk method, this method does not require the characterization of \delta¹⁵N of primary producers as the basal resource of food webs.
- 2. δ^{15} N of phenylalanine reflects an integrated value for δ^{15} N of primary producers that are actually eaten by consumers in the studied food web.
- 3. Very small sample size (0.5-1.0 nmol/amino acid) is required for the $\delta^{15}N$ analysis of amino acids by GC/IRMS.
- 4. The error in TP estimates is substantially small (1σ=0.12 and 0.17 for for aquatic and terrestrial food webs, respectively).

Chikaraishi et al., 2009, 2010