Flare-driven X-ray ionization and chemistry in protoplanetary disks

H. Washinoue, ¹ K. Furuya, ¹ and S. Takasao²

¹Pioneering Research Institute, RIKEN, Japan ² Humanities and Sciences/Museum Careers, Musashino Art University, Japan

Young stars often produce powerful explosions called flares—sudden releases of magnetic energy that generate intense X-ray radiation lasting for several hours. These X-rays play an important role in shaping the physical and chemical conditions of the surrounding protoplanetary disk. In particular, flares are a unique source of hard X-rays with energies above about 10 keV in a protoplanetary system. These high-energy photons can penetrate deep into the disk and ionize gas without undergoing absorption by disk materials [1]. While observations have indicated that time variability in stellar X-ray luminosity affects disk ionization [2], theoretical models [e.g., 3] have often neglected the detailed properties of individual flares and their hard X-ray emission.

In our study, we develop a model of time-varying X-ray emission from flares, based on solar/stellar observations and theories [4]. We combine this model with radiative-transfer and chemical network calculations to quantify how flare-driven X-rays change the ionization state and chemistry in the disk. Our results show that a single flare (energy $\sim 10^{35}$ erg) can temporarily raise ionization rates to levels higher than those produced by galactic cosmic rays, leading to enhanced formation of molecules such as HCO⁺ and N₂H⁺. These findings highlight the importance of flare-driven X-rays as a driver of ionization and chemistry in protoplanetary disks. I will also discuss the potential impact of multiple flares and their role in the disk's chemical evolution.

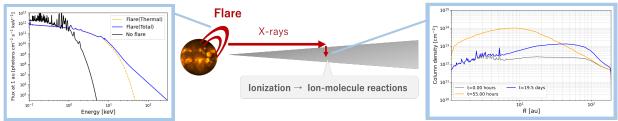


Figure 1: A schematic picture of this study. We model an X-ray spectrum of the stellar flare (left figure) and study the chemical responses (right figure: HCO+ column density before (gray line) and after the single flare (blue and orange lines)).

References

- [1] T. J. Bethell & E. Bergin, 2011, ApJ, 740, Issue 1, 7
- [2] I. Cleeves, E. Bergin, K. Oberg, S. Andrews, D. Wilner, & R. Loomis, 2017, ApJ, 843:L3
- [3] A. R. Waggoner & I. Cleeves, 2022, ApJ, 928, Issue 1, 46
- [4] H. Washinoue, K. Furuya, & S. Takasao, 2024, ApJ, 976, Issue 1, 25.