Commissioning of a new measurement system for ion—polar-molecule reactions under low-temperature conditions

K. Urata, T. Sekino, and K. Okada

Department of Materials and Life Sciences, Sophia University, Tokyo, Japan

We have been developing an experimental apparatus designed to measure rate coefficients and branching ratios of ion—polar-molecule reactions in the low- to intermediate-temperature range. The system consists of a storage ion source (SIS) [1], a wavy/linear Stark velocity filter [2], and a cryogenic linear octupole radio-frequency (RF) ion trap (OPIT) [1]. The primary objective of this research project is to measure reaction rates of H_3^+ and hydrocarbon ions CH_n^+ (n = 0-5) with polar molecules. These reactions are believed to play crucial roles in the formation processes of interstellar molecules; however, only a limited number of reaction rate

coefficients at low temperatures have been reported to date. In this context, hydrogen/methane gas was introduced into the SIS to produce H_3^+ and CH_n^+ ions, and a quadrupole mass spectrometer was used to selectively extract specific ion species. Figure 1 shows the mass spectrum of CH_n^+ ions detected at the end of the beamline through the OPIT (see Fig. 2). Based on the observed pressure dependence of the mass spectra, CH_5^+ is considered to be formed via the ion–molecule reaction $CH_4^+ + CH_4 \rightarrow CH_5^+ + CH_3$ in the SIS. In this poster presentation, we will report in detail on the production of low-energy H_3^+ / CH_n^+ ions using the SIS and discuss the optimization of beam transport and trapping of externally injected ions in the cryogenic OPIT via the sextupole RF ion beam guide.

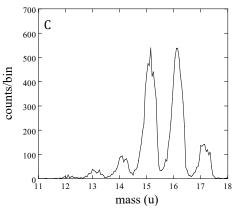


Figure 1: Mass spectra of CH_n^+ (n = 0-5) obtained using a quadrupole mass spectrometer (SRS, RGA100) located at the end of the beamline.

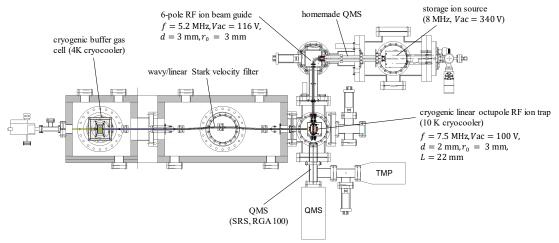


Figure 2: Schematic diagram of a new measurement system for ion—polar-molecule reactions under low-temperature conditions.

References

- [1] E. Teloy and D. Gerlich, Chem. Phys. 4, 417 (1974).
- [2] K. Okada et al., Rev. Sci. Instrum.88, 083106 (2017).