ALMA Band 7 Observations of Water Lines in the Protoplanetary Disk of V883 Ori

H. Nakasone¹, S. Notsu^{2, 3}, T. Yoshida^{4, 5}, H. Nomura^{4, 5}, T. Tsukagoshi⁶, T. Hirota^{4, 5}, M. Honda⁷, E. Akiyama⁸, A. S. Booth⁹, J. -E. Lee¹⁰, S. Lee¹¹, and C.Walsh¹²

¹Kyoto Univ., ²Univ. of Tokyo, ³RIKEN, ⁴NAOJ, ⁵SOKENDAI, ⁶Ashikaga Univ., ⁷Okayama Univ. of Science, ⁸Niigata Inst. of Tech., ⁹Harvard/CfA, ¹⁰Seoul National Univ., ¹¹KASI, ¹²Univ. of Leeds

The FU Orionis star V883 Ori provides a unique opportunity to probe the water snowline in a protoplanetary disk. During an accretion burst, the enhanced stellar luminosity heats the disk, sublimating ices and bringing volatile species into the gas-phase^{[1],[2],[3],[4]}. The water snowline, located at ~80 au in the midplane^[3], represents a key boundary for dust growth and volatile delivery to forming planets.

We present Atacama Large Millimeter/submillimeter Array Band 7 observations of V883 Ori (PI: S. Notsu) that detect two targeted water isotopologue transitions: para- $H_2^{18}O$ $5_{1,5}$ – $4_{2,2}$ at 322 GHz and HDO $3_{3,1}$ – $4_{2,2}$ at 335 GHz. After correcting for Keplerian rotation, we detect HDO and $H_2^{18}O$ at 23.6 σ and 9.3 σ , respectively.

Rotational-diagram analysis using a Markov Chain Monte Carlo approach yields $T_{rot} = 116.89 \pm 12.81~K$ and $N = (4.90 \pm 1.69) \times 10^{15}~cm^{-2}$ for $H_2^{18}O$, and $T_{rot} = 87.46 \pm 4.95~K$ and $N = (4.47 \pm 0.62) \times 10^{15}~cm^{-2}$ for HDO. These results imply water vapor abundances of N_{H2O}/N_{H2} ~ 3×10^{-7} – 5×10^{-6} and an HDO/H₂O ratio of $(0.4–2.0) \times 10^{-3}$ near the snowline, broadly consistent with inheritance from protostellar envelopes.

The HDO line in Band 7 is significantly weaker than predicted from Band 6 extrapolation, showing only $\sim 26\%$ of the expected strength. This attenuation can be explained by a more compact, hotter emitting region with an effective radius of ~ 53 au and/or frequency-dependent dust absorption that enlarges the apparent inner cavity at higher frequency. Our results highlight both the diagnostic power of water isotopologue lines and the need for higher angular-resolution observations to resolve the snowline and test these scenarios.

References

- [1] van 't Hoff, M. L. R., Tobin, J. J., Trapman, L., et al. 2018, The Astrophysical Journal Letters, 864, L23.
- [2] Lee, J.-E., Lee, S., Baek, G., et al. 2019, Nature Astronomy, 3, 314.
- [3] Tobin, J. J., Van 'T Hoff, M. L. R., Leemker, M., et al. 2023, Nature, 615, 227.
- [4] Yamato, Y., Notsu, S., Aikawa, Y., et al. 2024, The Astronomical Journal, 167, 66.