Fourier-transform microwave spectroscopy of the fluorovinyl radical

T. Oyama, N. Sakai, and Y. Endo²

¹RIKEN Pioneering research institute, Japan ² Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Taiwan

Reactions between acetylene and radicals play an important role in combustion chemistry and astrochemistry [1]. Halogenated vinyl radicals are considered intermediates in the addition reactions of acetylene with halogen atoms, and chlorovinyl radicals have been extensively studied both theoretically and experimentally [2,3]. In contrast, spectroscopic studies of fluorovinyl radicals have been limited to infrared spectroscopy in solid matrices [4,5]. In this study, we observed the pure rotational transitions of the fluorovinyl radical using a Fouriertransform microwave spectrometer. At the ae-RCCSD(T)-F12 level of calculation, the fluorovinyl radical was found to have three stable structures, α -H₂C=CF, β -trans-HFC=CH, and β -cis-HFC=CH, with the α -type being the most stable (Figure 1). The observed lines were analyzed using a doublet asymmetric rotor Hamiltonian, and the derived molecular constants agree well with values of ab initio calculations for β -type isomers. In this experiment, the most stable α -type was not detected. The fluorovinyl radical is considered to be formed via the addition of a fluorine atom, generated by discharge from fluoromethane, to the triple bond of acetylene, which produces the β -type isomers. Conversion from β - to α -type requires intramolecular hydrogen migration, which involves a high reaction barrier. Under the cryogenic conditions of the supersonic jet, this process is inhibited, explaining the absence of α -type isomer.

References

[1] Lowry, Mechanism and theory in Organic Chemistry, HarperColloms, 1987. [2] Li et al., 2006, Chem. Phys, 331, 42. [3] Cabezas et al., 2022, PCCP, 24, 25099. [4] Jacox, 1980, Chem. Phys., 53, 307. [5] Misochko et al., 2001, Russ. Chem. Bull., Int. Ed., 50, 989.

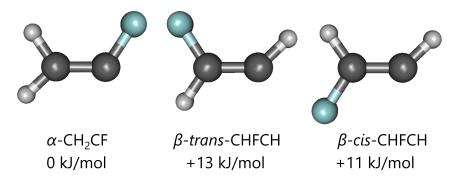


Figure 1. Three isomers of the fluorovinyl radical.