The first detection of sulfur atom behavior on the silicate surface

N. Sie, 1 M. Tsuge, 1 Y. Oba, 1 and N. Watanabe 1

In molecular clouds (MCs), there is a long-time unsolved issue called "missing sulfur", that the observed abundance of S-bearing molecules in both gas and solid phases cannot match the cosmic abundance of S ($\sim 10^{-5}$ relative to H) [e.g., 1, 2]. The main reservoir of S remains unknown. Several experiments on the photolysis of ice containing H₂S have been performed and have found the synthesis of S-bearing molecules, but these cannot explain the missing sulfur issue. Although atomic S⁺ ion was assumed to accumulate onto dust grains, being locked on the surface to cause the S depletion [3], no one can really verify this hypothesis. To clarify the fate of sulfur on dust grains, experiments for monitoring the behavior of S atoms on the materials of dust grains are highly desirable. However, a direct measurement of the S atom is difficult through the conventional experimental methods, such as IR spectroscopy and mass spectrometry.

In this work, we focus on the S atom itself using a recently developed method, PSD-REMPI, which has been applied to detect the atoms and radicals successfully [4, 5]. We monitor the behavior of S atoms on the silicate (Mg₂SiO₄) and amorphous solid water surface during the annealing process. By comparing the ratio, how many S atoms remain can be derived. We found that the S residue can remain in atomic form and survive even at room temperature, which shows a refractory property. In addition, the sulfur dimer S₂ is also detected, which is the main contribution of the S loss during annealing activities. These results could give evidence that embedded S atoms in the dust grain surface may be the source of missing sulfur in MCs

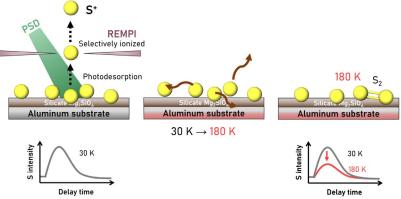


Figure 1: The cartoon figure of the PSD-REMPI method and experimental procedure.

References

- [1] Jiménez-Escobar, A. and G.M. Caro. 2011, A&A, 536, A91
- [2] Cazaux, S., H. Carrascosa, G.M. Caro, P. Caselli, A. Fuente, D. Navarro-Almaida and P. Riviére-Marichalar. 2022, A&A, 657, A100
- [3] Ruffle, D., T. Hartquist, P. Caselli and D. Williams. 1999, MNRAS, 306, 691-695
- [4] Miyazaki, A., N. Watanabe, W. Sameera, Y. Nakai, M. Tsuge, T. Hama, H. Hidaka and A. Kouchi. 2020, PRA, 102, 052822
- [5] Tsuge, M., G. Molpeceres, Y. Aikawa and N. Watanabe. 2023, Nat. Astro., 7, 1351-1358

¹ Institute of Low Temperature Science, Hokkaido University, Japan