Exploring Nondiffusive Pathways to Acetaldehyde Formation in Interstellar Ices: Insights from Computational Studies

B. Martínez-Bachs, 1 and A. Rimola 1

The detection of acetaldehyde (CH₃CHO) in cold astrophysical environments, such as dark clouds and prestellar cores, challenges standard grain-surface chemistry models, which rely on radical diffusion. At temperatures of ~10 K, radical mobility is extremely limited, making these pathways inefficient. To explain the presence of iCOMs in these cold cores, various chemical mechanisms have been proposed, including those based on nondiffusive pathways [1-6]. In this work, we present a computational investigation of a nondiffusive three-body (3-B) formation mechanism for CH₃CHO on interstellar water ices. The mechanism involves the hydrogenation of CO to form HCO in close proximity to a CH3 radical, enabling immediate reaction without requiring diffusion. Using static quantum chemical calculations, we characterized the potential energy surface, including competing channels such as hydrogen abstraction. To assess the efficiency of the mechanism under realistic conditions, we performed ab initio molecular dynamics simulations at 10-25 K on a crystalline water-ice surface. Our results show that CH₃CHO can form via this nondiffusive pathway, though alternative products (CH₄ + CO or stable HCO) are also possible, leading to a distribution of outcomes. These findings highlight the importance of nondiffusive chemistry for explaining iCOM formation in cold interstellar environments.

References

- [1] H. Hidaka, "title", ed. *** (Oxford University Press, New York Oxford, 2007), p. 45.
- [2] H. Shimauma, K. Pingu, & S. Miyauchi, 2008, ApJ 575, 1100.
- [1] Nadia Balucani et al 2015 MNRAS 449 L16
- [2] Jennifer B. Bergner et al 2017 ApJ 845 29
- [3] Qiang Chang and Eric Herbst 2016 ApJ 819 145
- [4] Mihwa Jin and Robin T. Garrod 2020 ApJS 249 26
- [5] Maxime Ruaud et al 2015 MNRAS 447 4004
- [6] Christopher N. Shingledecker et al 2018 ApJ 861 20

¹ Universitat Autònoma de Barcelona, Departament de Química, 08193 Bellaterra, Spain