Nitrile chemistry in a disk structure around the G24.78+0.08 hyper-compact H_{II} region

K. Taniguchi, ¹ K. Tanaka, ^{2,1} Y. Zhang, ³ R. Fedriani, ⁴ J. C. Tan, ^{4,5} S. Takakuwa, ⁶ F. Nakamura, ^{1,7} M. Saito, ^{1,7} L. Majumdar, ⁸ and E. Herbst^{5,9}

¹National Astronomical Observatory of Japan, Japan

²Center for Astrophysics and Space Astronomy, University of Colorado Boulder, USA

³Star and Planet Formation Laboratory, RIKEN Cluster for Pioneering Research, Japan

⁴Department of Space, Earth & Environment, Chalmers University of Technology, Sweden

⁵Department of Astronomy, University of Virginia, USA

⁶Department of Physics and Astronomy, Kagoshima University, Japan

⁷Department of Astronomical Science, SOKENDAI, Japan

⁸School of Earth and Planetary Science, NISER, India

⁹Department of Chemistry, University of Virginia, USA

Complex nitrile species, such as CH₃CN and HC₃N, have been usually detected in disks around T Tauri stars and Herbig Ae stars (e.g., [1]). The Molecules with ALMA at Planet-forming Scale (MAPS) [2] Large Program reveals that CH₃CN and HC₃N trace different layers of these disks; HC₃N traces upper and warmer layers compared to CH₃CN [3]. Thus, it is useful for investigating physical conditions of disks to observe different nitrile species. However, only CH₃CN lines have been used as typical disk tracers around massive stars (M > 8 M_{sun}) so far, and the nitrile chemistry in disks around such massive stars is still unrevealed yet.

We have analyzed Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 6 Band 6 data toward the hyper-compact H_{II} region G24.78+0.08 A1 (hereafter G24 HC H_{II} region). A current protostellar mass is derived to be ~20 M_{sun} by the SED fitting. Two vibrationally-excited lines of HC₃N (v_7 =2, J=24-23, l=0 and l=2e) have been detected from this HC H_{II} region. The spatial distribution and position-velocity (P-V) diagram of the HC₃N line (l=2e) are similar to those of the vibrationally-excited CH₃CN line (v_8 =1, $J_{K,l}$ =12_{6,1}-11_{6,1}). The CH₃CN lines were confirmed to trace the molecular disk in the G24 HC H_{II} region [4]. These results suggest that the HC₃N emission traces the molecular disk around the G24 HC H_{II} region previously identified by CH₃CN.

Using the 13 CH₃CN (J=13 $_K$ -12 $_K$, K=0-6) and HC¹³CCN (J=26-25) lines, we have derived the $N(^{13}$ CH₃CN)/ $N(^{13}$ CCN) column density ratios at the two positions around the G24 HC H_{II} region, which we name "HC H_{II} region" and "Molecular Peak", respectively. The $N(^{13}$ CH₃CN)/ $N(^{13}$ CCN) ratios are derived to be ~3.0-3.5. If there are no effects of the 13 C isotopic fractionation in each molecule (e.g., [5]) and the selective photodissociation of 13 CH₃CN and HC¹³CCN, the $N(^{13}$ CH₃CN)/ $N(^{13}$ CCN) ratio is expected to reflect the CH₃CN/HC₃N abundance ratio. We compare these $N(^{13}$ CH₃CN)/ $N(^{13}$ CCN) ratios to the CH₃CN/HC₃N abundance ratio in disks around T Tauri stars and Herbig Ae stars [3], as shown in Figure 1. The $N(^{13}$ CH₃CN)/ $N(^{13}$ CCN) ratios around the G24 HC H_{II} region are more than an order of magnitude higher than the CH₃CN/HC₃N abundance ratios in the other disks (~0.03-0.11). The higher $N(^{13}$ CH₃CN)/ $N(^{13}$ CCN) ratios around G24 suggest that the CH₃CN/HC₃N abundance ratios in the disk around the massive star are higher than those around the other disks.

Another possible interpretation of the much high $N(^{13}\text{CH}_3\text{CN})/N(\text{HC}^{13}\text{CCN})$ ratios around the G24 HC H_{II} region is that the column density ratios do not reflect the CH₃CN/HC₃N abun-

dance ratios. In fact, the integrated-intensity ratios of the vibrationally-excited lines of CH₃CN and HC₃N, which have almost same upper-state energies (\sim 770 K), are derived to be \sim 0.5-1.5 around the G24 HC H_{II} region. These integrated-intensity ratios are still higher than the abundance ratios in disks around T Tauri stars and Herbig Ae stars. Thus, it is most likely that the CH₃CN/HC₃N abundance ratios around the G24 HC H_{II} region are higher than those in the other disks around the lower-mass stars.

The high CH₃CN/HC₃N ratios around the G24 HC H_{II} region imply the thermal desorption of CH₃CN in the hot dense region, and efficient destruction of HC₃N by the UV radiation and reactions with ions (e.g., H_3^+) in the ionized region. The former is supported by the fact that the derived excitation temperatures of CH₃CN (~ 330 K) around the G24 HC H_{II} region are much higher than its sublimation temperature. This is different from a suggestion that the photo-evaporation is important in disks around T Tauri stars and Herbig Ae stars. The higher UV photodissociation rate of HC₃N compared to CH₃CN [6] can destroy both HC₃N and HC¹³CCN efficiently, which should increase the CH₃CN/HC₃N abundance ratios and the $N(^{13}$ CH₃CN)/N(HC¹³CCN) ratios. In summary, the nitrile chemistry around the massive star is likely different from that in the disks around T Tauri stars and Herbig Ae stars.

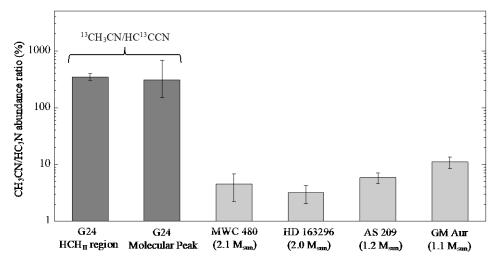


Figure 1: Comparisons of the CH₃CN/HC₃N abundance ratio among disks with different stellar masses.

References

- [1] J. B. Bergner, V. G. Guzman, K. I. Öberg, et al., 2018, ApJ, 857, 69.
- [2] K. I. Öberg, V. V. Guzman, C. Walsh, et al., 2021 (in press) arXiv:2109.06268
- [3] J. D. Ilee, C. Walsh, A. S. Booth, et al., 2021 (in press) arXiv:2109.06319
- [4] L. Moscadelli, R. Cesaroni, M. T. Beltrán, 2021, A&A, 650, A142.
- [5] K. Taniguchi, H. Ozeki, M. Saito, 2017, ApJ, 846, 46.
- [6] R. Le Gal, M. T. Brady, K. I. Öberg, et al., 2019, ApJ, 886, 86.