Experimental and computational studies on the physicochemical behavior of phosphine induced by reactions with H and D atoms on interstellar ice grains

T. Nguyen,¹ Y. Oba,¹, W.M.C. Sameera¹, A. Kouchi¹, and N. Watanabe¹

¹Institute of Low Temperature Science, Hokkaido University, N19W8, Sapporo, Hokkaido, Japan

Phosphine (PH₃) is an important molecule for the chemistry of phosphorus (P-) bearing species in the interstellar medium (ISM). Interstellar PH₃ is thought to primarily form on icy grains, where several surface processes may occur during and after its formation. To better understand the physicochemical behavior of PH₃ on ice grains in dense molecular clouds, we performed experimental and computational studies on the reactions of phosphine with H and D atoms at low temperatures. We found that phosphine and its deuterated isotopologue PD₃ are released into the gas phase from ice surfaces via chemical desorption. We confirmed that H-D substitution reactions of PH₃ and D-H substitution reactions of PD₃ occurred following reactions with D and H atoms, respectively, at 10 K on icy surface. Because the activation barrier for the abstraction of H and D atoms from phosphine is ~1500 K, quantum tunneling should play a role at low temperatures. On the other hand, the D-H substitution reactions of PD₃ was slightly faster than the H-D substitution reactions of PH₃, meaning that the rates of the H-D and D-H substitution reactions are not constrained by tunneling reactions but rather by other elementary processes such as atoms diffusion on ice.