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Surface reactions play a vital role in the chemistry occurring on interstellar mediums (ISM). 
In particular, under the cold conditions of a molecular cloud (~10-20 K), adsorbates (atoms, 
radicals and molecules) accrete, diffuse, react and desorb on top of ice-covered dust grains [1]. 
The chemical composition of these ices is varied and depends on the cloud's evolutionary 
stage, e.g. water ice dominates the early stages [2]. At the same time, CO and CO2 are 
prevalent in later stages. Moreover, interstellar ices are usually amorphous, presenting a wide 
range of binding sites for adsorbates to perform the aforementioned processes [2]. It appears 
evident that, given the complexity of the substrates, the dynamics of adsorbates on interstellar 
ices are essentially non-local, meaning that a particular process depends significantly on the 
binding site under consideration. This condition imposes a constraint on computational 
studies of interstellar surface chemistry, requiring extensive sampling and considerably 
increasing the computational cost for constructing reliable models. Several approaches are 
employed in the literature to reduce this cost, i.e. cluster models [3], periodic models, [4] 
QM/MM models [5] and recently, machine-learned models [6]. In this contribution, I will 
present our recent efforts in the application of neural-network potentials [7] to surface 
astrochemistry, putting the focus on the simulation of: 

1. Adsorption and desorption (calculation of sticking coefficients and desorption rate 
constants) [6]; 

2. Diffusion (estimation of diffusion coefficients and hopping rate constants) [8]; 
3. Reaction (chemical desorption vs energy dissipation) [9].  
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