Testing Dust-Surface Formation Model of Prebiotic Molecule CH₃NCO in Star-Forming Cores Sagittarius B2 (M) and (N) M. Araki, ¹ Y. Ohno, ^{1,2} K. Izuoka, ¹ T. Oyama, ² S. Takano, ³ N. Kuze, ⁴ Y. Sumiyoshi, ⁵ K. Tsukiyama ¹ ¹Faculty of Science Division I, Tokyo University of Science, Japan ²RIKEN, Japan ³College of Engineering, Nihon University, Japan ⁴Department of Materials and Life Sciences, Sophia University, Japan ⁵Faculty of Science and Technology, Gunma University, Japan Origin of organic molecules on Earth is discussed to be interstellar clouds, because comets carried molecules produced in clouds. Methyl isocyanate CH₃NCO is presumably one of the delivered organic molecules at the primitive earth. This molecule was firstly detected in the the (N) core of the Galactic Center star-forming region Sagittarius (Sgr) B2 [1]. Recently, the theoretical studies have suggested that this molecule is formed on dust surface in molecular cloud [2]. If that is the case, CH₃NCO abundantly desorbs from dust surface as hot gas in a central region of a star-forming core and slightly exists in an outer region as cold gas. To examine an outer region of a star-forming core, we observed the (M) core in Sgr B2 with the 45-m telescope of Nobeyama Radio Observatory. Rotational transitions of CH₃NCO were firstly detected in this region. The abundance ratio and the rotational temperature are derived to be [CH₃NCO]/[HNCO] = 0.03 ± 0.01 and $T_{\text{rot}} = 28 \pm 6$ K, respectively. To examine temperature and distribution of CH₃NCO, the archival data toward the (N1) core of Sgr B2 observed by ALMA were investigated in the 94–113 GHz region. Considering intensity maps and velocity structures, a compact distribution having a clumpy toroidal structure was firstly imaged by CH₃NCO showing high temperature of ~60 K, as shown in Fig. 1. These results suggest a hot and abundant condition of this molecule in the central region of the core. Hence, CH₃NCO and/or its precursors are likely to be produced on dust surface. Figure 1: The integrated intensity map of the $J_{Ka,Kc} = 11_{1,10} - 10_{1,9}$ line of CH₃NCO (a) and its position velocity map (b). The illustration in (a) shows an expected toroidal structure. The map (b) is sampled in the red square of (a). ## References