Observations of the ¹³CO/C¹⁸O isotope ratios toward the Galactic Center

<u>A. Ubagai</u>,¹ T. Oyama,¹ M. Araki,¹ S. Takano,² Y. Minami,¹ A. Ohsugi,¹ H. Ozaki,³ Y. Sumiyoshi,³ N. Kuze,⁴ and K. Tsukiyama¹

¹Department of Chemistry, Tokyo University of Science, Japan ²Department of Physics, College of Engineering, Nihon University, Japan ³Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, Japan ⁴Department of Materials and Life Sciences, Sophia University, Japan

Isotope ratios are one of the most powerful probes for chemical evolution of space. Generally, isotope ratios are measured *via* abundances of isotope molecules. To investigate chemical evolution of molecular clouds, isotopic species of CO are representative tracers due to its ubiquitousness and richness. However, ratios of ¹³CO/CO and C¹⁸O/CO are difficult to measure because of optical thickness of CO. Thus, a ratio of ¹³CO/C¹⁸O is an effective probe. For the Galactic Center region, the ratio was reported to be 10–15 by using FCRAO 14 m radio telescope in 1986 [1]. In this work, we observed intensities of emission lines of the *J* = 1–0 transition of CO toward Sgr B2(N) using Nobeyama 45 m Radio Telescope to measure the isotopic ratios precisely. The observational position of $\Delta \alpha = 57''$ and $\Delta \delta = -5.6''$ from the Sgr B2(N) core was used to prevent overlapping with absorption lines, and then only emission lines were detected. The isotope ratios were derived to be 5.9–17.5 toward Galactic Center. As a result, we found that the ratios in this work can be comparable with that of the previous work [1].

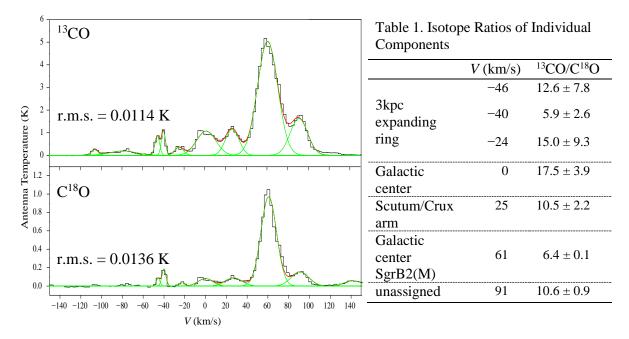


Figure 1: Observed J = 1-0 rotational transitions of ¹³CO and C¹⁸O. The green lines show individual velocity components, and the red line is a sum of them.

Reference

[1] D. K. Taylor & R. L. Dickman, 1986, BAAS 18, 1026.