Vibrational temperatures of HC₃N in Sagittarius B2(N)

<u>A. Ohsugi</u>,¹ T. Oyama,¹ M. Araki,¹ S. Takano,² A. Ubagai,¹ Y. Minami,¹ H. Ozaki,³ Y. Sumiyoshi,³ N. Kuze,⁴ and K. Tsukiyama¹

 ¹ Department of Chemistry, Tokyo University of Science, Japan
² Department of Physics, College of Engineering, Nihon University, Japan
³ Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, Japan
⁴ Department of Materials and Life Sciences, Sophia University, Japan

Sagittarius (Sgr) B2(N) having complicated cores is one of the most famous massive starforming regions. Investigation of its core structures is a crucial step to understand the formation process of those regions. As a previous work, Belloche *et al.* observed the rotational lines of various vibrational states for HC₃N in the 80-267 GHz region and divided them into four velocity components of 51, 63, 72 and 78 km/s [1]. The assumed rotational temperatures of 200-230 K could reproduce intensities of the observed lines in their analysis. In the present work, we observed the J = 12-11 transitions of the vibrational states of $v_6 = 1$, $v_7 = 1$ and $v_6 = v_7 = 1$ with Nobeyama 45 m radio telescope. The vibrational temperatures of HC₃N in the 108.9-110.5 GHz region for individual velocity components were derived independently by using the rotation diagram of these components, as shown in Fig.1. The vibrational temperatures of 255-417 K obtained, as shown in Table 1, were higher than the assumed rotational temperatures in the previous work [1]. These higher temperatures are thought to be due to radiative pumping.

Figure 1: The rotation diagram of four velocity components for HC_3N in Sgr B2(N).

References

[1] A. Belloche, H. S. P. Müller, K. M. Menten, P. Schilke & C. Comito, 2013, A&A 559, A47.