Chemistry of Cyanopolyynes in Hot Core Regions

<u>K. Taniguchi</u>, ^{1,2} M. Saito, ^{1,2} H. Ozeki, ³ Y. Miyamoto, ² H. Kaneko, ² T. Minamidani, ^{1,2} F. Nakamura, ^{1,4} T. Hirota, ^{1,4} K. Dobashi, ⁵ T. Shimoikura, ⁵

¹Department of Astronomical Science, SOKENDAI, Japan ²Nobeyama Radio Observatory, National Astronomical Observatory of Japan, Japan ³Department of Environmental Science, Toho University, Japan ⁴National Astronomical Observatory of Japan, Japan ⁵Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Japan

Cyanopolyynes ($HC_{2n+1}N$; n=1-5) are one of the representative series of carbon-chain molecules. Carbon-chain molecules are good indicators of starless and star-forming cores; carbon-chain molecules are abundant in young starless cores and decrease as progress of the star formation processes^[1]. However, two low-mass star forming cores where various carbon-chain molecules are abundant were discovered, and these regions were named Warm Carbon Chain

Chemistry (WCCC) sources^[2].

On the other hand, there are few studies about carbon-chain molecules in high-mass star forming regions, and our understanding is poor. We then carried out observations toward hot cores with the Nobeyama 45-m radio telescope, the Green Bank 100-m telescope, and the Very Large Array (VLA) in order to study chemical mechanisms of carbon-chain molecules in hot core regions.

We derived 13 C isotopic fractionation of HC_3N toward G28.28-0.36 by observations of the three 13 C isotopologues with the Nobeyama 45-m telescope. The abundance ratios are found to be $1.0(\pm0.2):1.00:1.47(\pm0.17)$ for $[H^{13}CCCN]:[HC^{13}CCN]:[HCC^{13}CN]$. The observational results imply that the neutral-neutral reaction between C_2H_2 and CN overwhelms other formation pathways, which is consistent with the chemical model calculation $[^{13}]$.

We also detected HC_7N toward 2 hot cores, G28.28-0.36 and G12.89+0.49, with the Green

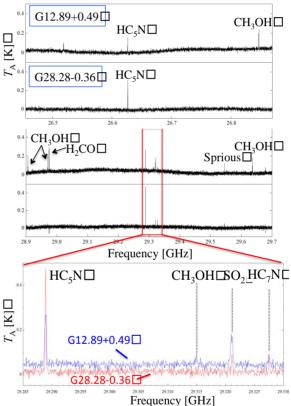


Figure 1. The spectra in two hot cores obtained with the Green Bank 100-m telescope.

Bank 100-m telescope at the time of writing the abstract (Figure 1). Our high-spatial-resolution maps with the VLA toward G28.28-0.36 show that the spatial distributions of cyanopolyynes (HC_3N , HC_5N , and HC_7N) are similar to that of CH_3CN , which is a hot core tracer. Based on these observational results, we consider that there is a possibility that cyanopolyynes can be efficiently formed in hot core regions.

References

- [1] H. Suzuki et al., 1992, ApJ 392, 551
- [2] N. Sakai & S. Yamamoto, 2013, Chem. Rev., 113(12), 8981
- [3] J. F. Chapman et al., 2009, MNRAS, 394, 221