Precise determination of the isotopic ratios of HC₃N in the massive star-forming region Sgr B2(M)

<u>Takahiro Oyama,</u>¹ Rin Abe,¹ Ayane Miyazaki,¹ Mitsunori Araki,¹ Shuro Takano,² Nobuhiko Kuze,³ Yoshihiro Sumiyoshi,⁴ Koichi Tsukiyama,¹ and Yasuki Endo⁵

 ¹ Department of Chemistry, Tokyo University of Science, Japan
² Department of Physics, College of Engineering, Nihon University, Japan
³ Department of Materials and Life Sciences, Sophia University, Japan
⁴ Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, Japan
⁵ Department of Applied Chemistry, National Chiao Tung University, Taiwan

Isotopic ratio is a critical parameter in understanding galactic chemical evolution. In particular, ¹³C isotopic ratio of an organic molecule reflects its formation mechanism. In the present study, we observed the simplest cyanopolyyne HC₃N and its isotopomers in the massive star-forming region Sgr B2(M) with Nobeyama 45 m radio telescope. Fig. 1 shows the observed peaks of the J = 10-9 transition. The column density and the rotational temperature of HC₃N were determined to be 1.6×10^{15} cm⁻² and 163 K, respectively. The ratios of the column densities for the ¹³C isotopomers were derived to be [H¹³CCCN]:[HC¹³CCN]:[HCC¹³CN] = 1: 04(4):1.01(4), where the rotational temperature was fixed to that of HC₃N. The ratios are almost the same. It is considered that the ¹³C isotope exchange reactions do not contribute to make slight difference between the column densities of the three ¹³C isotopomers in the relatively warm region Sgr B2(M). Therefore, we concluded that there is no isotopic fractionation for the specific carbon atoms in HC₃N. We also observed the transitions in the vibrational excited states of HC₃N. The rotational temperature of 352 K determined was obviously different from that of the vibrational ground state.

In addition, we observed the peak of the J = 10-9 transition of HC₃¹⁵N as shown in Fig. 1. The ¹⁴N/¹⁵N ratio was tentatively determined to be ~99 in Sgr B2(M), which agrees with that estimated by Adande *et al* (123.8 ± 37.1) [1]. It is considered that this ratio reflects difference of nucleosynthesis processes between ¹⁴N and ¹⁵N atoms.

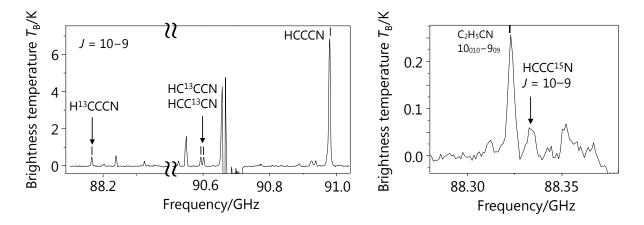


Figure 1: The J = 10-9 transitions of HC₃N observed toward Sgr B2(M) with Nobeyama radio telescope. Left panel: the lines of HCCCN, H¹³CCCN, HC¹³CCN and HCC¹³CN. Right panel: the line of HCCC¹⁵N.

Reference: [1] G. R. Adande and L. M. Ziurys, ApJ, 744, 194 (2012).