Carbon Isotope and Isotopomer Fractionation in Cold Dense Cloud Cores

K. Furuya, ¹ Y. Aikawa, ¹ N. Sakai, ² and S. Yamamoto ²

¹Department of Earth and Planetary Sciences, Kobe University, Japan ²Department of Physics, The University of Tokyo, Japan

 13 C should be useful to investigate chemistry of carbon bearing species. Recent observations in TMC-1 indicated that the molecular abundances of carbon isotopomers are different. Takano et al. (1998) observed HC₃N and found HCC¹³CN is more abundant than HC¹³CCN and H¹³CCCN, which indicates three carbon atoms are not equivalent in HC₃N. Sakai et al. (2007; 2010) reported the abundance ratios of C¹³CS/¹³CCS = 4.2 and CCH/¹³CCH = 1.6. Again, these results indicate two carbon atoms are not equivalent in CCS and CCH. They pointed out there are two possible processes to cause these fractionation: (i) the formation path ways of the species and (ii) the exchange of the ¹³C position after formation of molecules by isotopomer-exchange reactions.

We construct the gas-grain chemical network model which includes carbon isotopes (¹²C and ¹³C). Temporal variations of molecular abundances, the carbon isotope ratios (¹²CX/¹³CX) and the isotopomer ratios (¹²C¹³CX/¹³C¹²CX) of CCH and CCS in cold dense cloud cores are investigated by numerical calculations.

We reproduce the observed $C^{13}CH/^{13}CCH$ ratio in TMC-1; isotopomer-exchange reaction, $^{13}CCH + H -> C^{13}CH + H$. However, the $C^{13}CS/^{13}CCS$ ratio is lower than observed in TMC-1. We propose the isotopomer-exchange reaction,

 13 CCS + H -> C^{13} CS + H + 15K. In the model with this reaction, we reproduce the observed C^{13} CS/ 13 CCS, CCS/ C^{13} CS and CCS/ 13 CCS ratio simultaneously.

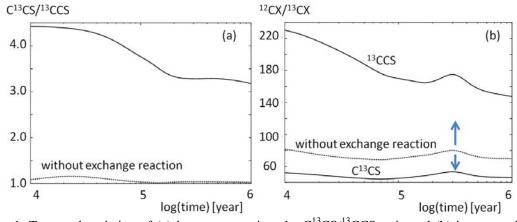


Figure 1: Temporal variation of (a) isotopomer ratios: the $C^{13}CS/^{13}CCS$ ratio and (b) isotope ratios of CCS: the $CCS/^{13}CCS$ and $CCS/C^{13}CS$ ratios. Solid lines show ratios in the model with the reaction, $^{13}CCS + H -> C^{13}CS + H + 15K$. Dashed line shows the isotope ratio of CCS in the model without the reaction. The density is $n_H = 10^5 \ cm^{-3}$.

References

- [1] Takano, S. et al. 1998, A&A, 329, 1156.
- [2] Sakai, N., Ikeda, M. & Morita, M., et al. 2007, ApJ, 663, 1174.
- [3] Sakai, N., Saruwatari, O., Sakai, T., Takano, S., & Yamamoto, S. 2010, A&A, 512, 10.