UV/EUV photolysis of polar and nonpolar molecules' effect on methane containing ice mixture

Y.-J. Chen,¹ C.-C. Chu,¹ P.-Y. Huang,¹ T.-S. Yih,¹ W.-H. Ip,² H.-S. Fung,³ and C.-Y. R. Wu⁴

¹ Department of Physics, National Central University, Taiwan

² Graduate Institute of Astronomy, National Central University, Taiwan

³ National Synchrotron Radiation Research Center, Taiwan

⁴ Space Science Center and Department of Physics and Astronomy, University of Southern California, USA

UV/EUV photolysis of N₂+CH₄, H₂O+CH₄ and N₂+CH₄+H₂O ice mixtures at 17K have been investigated in this work. IR spectra show that C₂H₆ and C₃H₈ production yields are slower in nonpolar molecule (N₂) containing ice mixtures, and lots of H atoms dissociated from CH₄ molecules will recombine with CCCN molecules to form HNCCC in N₂+CH₄ ice mixture. That makes the absorbance feature of HNCCC at 2205 cm⁻¹ is stronger than CCCN at 2194 cm⁻¹[1]. Besides, all CCN bearing molecules which were formed via UV/EUV photolysis of N₂+CH₄ ice mixture converted into OCN⁻ while polar molecule (H₂O) was the starting component of ice mixture. This result shows that CN bearing molecules prefer to interact with OH radical to form HNCO and subsequently interacts with H₂O to form OCN⁻.

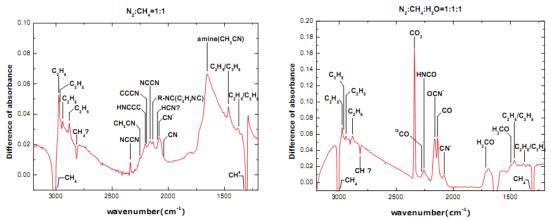


Figure 1: IR spectra of N₂:CH₄= 1:1 and N₂:CH₄:H₂O = 1:1:1 after UV/EUV irradiation.

References

 J. B. Halpern, G. E. Miller, H. Okabe, and W. Nottingham, 1988, Journal of Photochemistry and Photobiology, A: Chemistry 42, 63.

[2] R. L. Hudson and M. H. Moore, 2004, ICARUS 172, 466.