Spectral Lines of Carbon Chain Molecules in a Star Forming Region L1527 between 29 and 90 GHz

M. Araki,¹ N. Koshikawa,¹ H. Yamabe,¹ H. Umeki,¹ K. Tsukiyama,¹ S. Takano,² N. Kuze³

¹ Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokvo, 162-8601, Japan

² Nobeyama Radio Observatory and Graduate University for Advanced Studies, Minamimaki, Minamisaku, Nagano 384-1305, Japan

³ Department of Chemistry, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chivoda-ku, Tokvo 102-8554, Japan

We have studied molecular spectral lines of carbon chain molecules in a star forming region L1527 between 29 and 90 GHz by using the 45m telescope of the Nobeyama Radio Observatory (NRO). H₂CCO, HCCCHO, SO and isotopic species of HCN and HC₃N have been detected for the first time in L1527.

Using integrated intensities of the detected rotational lines of $J_{Ka,Kc} = 4_{0,4}-3_{0,3}$, $4_{1,4}-3_{1,3}$ and $4_{1,3}-3_{1,2}$ of H₂CCO, column densities of ortho and para H₂CCO were estimated to be 3.8×10^{12} and 2.0×10^{12} cm⁻², respectively, with an assumption of an excitation temperature of 12.3 K [1a]. These values give an ortho to para ratio of 1.8(-0.1, +0.7) which is less than the ortho to para ratio of 3.0 at the high temperature limit. The small ratio might suggest that H₂CCO in L1527 comes off from the grain surfaces.

Column densities of HC¹³CCN and HCC¹³CN were obtained based on the assumption of the excitation temperature of 12.3 K [1a] as shown in Table 1. Isotopic ratios, [Normal Species]/[¹³C Species], were derived from a comparison with the reported column density of the normal species HC₃N [1b]. Since the isotopic ratios in L1527 were similar to those in TMC-1 [2], the chemical reaction producing HC₃N in L1527 can be similar to those suggested in TMC-1 as follows [2]:

$C_2H_2^+ + HCN \rightarrow$	$HC_3NH^+ + H$,
$C_2H_2 + HCNH^+ \rightarrow$	$HC_3NH^+ + H_2$,
$C_2H_2 + CN \rightarrow$	$HC_3N + H$ (dominant reaction).

Table 1: Column densities and isotopic ratios of HC_3N in TMC-1 and L1527			
Isotopic Species	Column Density(cm ⁻²)	[Normal Species]/[¹³ C Species]	
	TMC-1 [2]		
H ¹³ CCCN	$(2.0 \pm 0.2) imes 10^{12}$	79 ± 11	
HC ¹³ CCN	$(2.1 \pm 0.2) imes 10^{12}$	75 ± 10	
HCC ¹³ CN	$(2.9 \pm 0.3) imes 10^{12}$	55 ± 7	
		L1527	
H ¹³ CCCN	-	-	
HC ¹³ CCN	3.3×10^{11}	80 ± 6	
HCC ¹³ CN	$5.8 imes 10^{11}$	50 ± 4	

. . . .

References

[1] (a) Sakai et al., ApJ, 672, 371 (2008). (b) Sakai et al., ApJ, 702, 1025 (2009).

[2] Takano et al., A&A, 329, 1156 (1998).