Applications of para-hydrogen matrix spectroscopy

Lee, Yuan-Pern^{1,2}*

¹Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
² Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan Email: yplee@nycu.edu.tw

With its unique properties associated with quantum solid, *para*-hydrogen $(p-H_2)$ matrix isolation has facilitated several applications unachievable with noble-gas matrix isolation techniques.¹

We performed electron bombardment on p-H₂ during deposition to produce H₃⁺; H₃⁺ readily transfers a proton to polycyclic aromatic hydrocarbons (PAH) to form protonated PAH, possible carriers of unidentified IR emission in astronomy. Some protonated species became neutralized to form mono-hydrogenated PAH. Examples include protonated and hydrogenated glycine, phenanthrene (C₁₄H₁₀) and phenanthridine (HC₁₃H₉N), and CH₅⁺.

We also utilized several novel methods to generate H atoms for reactions in darkness: H can efficiently tunnel through solid p-H₂ via H-H bond breaking and formation to efficiently move next to the reactant for reaction; even when a barrier exists, the tunneling reaction might take place. One method for the generation of H atoms is to add trace Cl₂ in the matrix and photodissociate it at 365 nm to generate Cl atoms; subsequent IR irradiation activates Cl + H₂ $(v = 1) \rightarrow HCl + H$ to generate H atoms. Another method is to photolyze H₂O₂ near 250 nm to form OH, which reacts with H_2 to form $H_2O + H$ via tunneling; in darkness, this tunneling reaction can generate H atoms slowly and continuously, causing more significant H reactions in darkness than the first method. The experiment of H + methylamine using H_2O_2 showed that the H-abstraction proceeded much further to form HCN, as compared with that using Cl₂. In addition to the production of various isomers of hydrogenated species via H addition, such as H + PAH to form HPAH, we found that the H abstraction plays important roles in astrochemistry. Furthermore, the coupling of H abstraction and H addition (i.e. $H + H \rightarrow H_2$) enables endothermic reactions such as isomerization and fragmentation to occur in darkness. These results introduce new concept in astrochemistry.² Examples include H + glycolaldehyde, alanine, and glycolamide.

Finally, we will present the electronic transitions of PAH in p-H₂. With the unique properties of matrix isolation, we found misassignments of some reported transitions and new transitions. We also found consistent matrix shifts for PAH in solid p-H₂, indicating the possibility to use spectra in p-H₂ to help the identification of defuse interstellar bands (DIB). Examples include transitions of hexabenzocoronene, ovalene, isoquinoline, and their derivatives.

References

Tsuge, M; Lee, Y.-P. *in Molecular and Laser Spectroscopy*, Gupta, V. P.; Ozaki, Y. Eds., Elsevier: Amsterdam, Netherlands, **2020**, *Vol. 2*, 167–215.
 Haupa, K. A.; Joshi, P. R.; Lee, Y.-P. J. Chin. Chem. Soc. **2022**, *69*, 1159–1173.