Characterization of H– π and CH–O Structures of the 1:1 Methanol– Benzene Complex Using Matrix Isolation Infrared Spectroscopy

Amicangelo, J.C.,¹* Romano, N.C.,² Demay, G.R,² Campbell, I.E.,² Wilkins, J.D.²

*presenter

¹jca11@psu.edu, Penn State Erie, Erie, PA, United States

² Penn State Erie, Erie, PA, United States

Matrix isolation infrared spectroscopy was used to characterize a 1:1complex of methanol (CH₃OH) and benzene (C₆H₆). Co-deposition experiments with CH₃OH and C₆H₆ were performed at 17 - 20 K using nitrogen and argon as the matrix gases. Several new infrared peaks in the co-deposition spectra were observed near the fundamental absorptions of the CH₃OH and C_6H_6 parent molecules and these new peaks have been attributed to $CH_3OH-C_6H_6$ complexes. Experiments were also performed with isotopic CD₃OD and C₆D₆ and the corresponding infrared peaks of the isotopologue complexes have also been observed. Theoretical calculations were performed for the CH₃OH-C₆H₆ complex using MP2 and CCSD(T) methods using the aug-cc-pVDZ and aug-cc-pVTZ basis sets. Full geometry optimizations followed by vibrational frequency calculations were performed for several initial starting geometries and three stable minima were found for the CH₃OH-C₆H₆ complex. The first has the CH₃OH above the C₆H₆ ring with the OH hydrogen interacting with the π cloud of the ring (H- π complex), the second has the CH₃OH above the C₆H₆ ring with the OH oxygen interacting with one of the C-H bonds of the ring (CH-O 1 complex), and the third has the CH₃OH towards the side of the C₆H₆ ring with the OH oxygen interacting with two of the C-H bonds of the ring (CH-O 2 complex). The H- π complex structure is predicted to be the lower energy structure by approximately 8 kJ/mol compared to the two CH-O structures. Comparing the theoretically predicted infrared spectra for the optimized CH₃OH-C₆H₆ complex structures to the experimentally observed infrared peaks in argon and nitrogen matrices, it is concluded that in the argon matrices only the H- π complex structure is being observed, whereas in the nitrogen matrices the H- π complex and CH-O 1 complex structures are being observed.

